无限的路vj

无限的路
 

甜甜从小就喜欢画图画,最近他买了一支智能画笔,由于刚刚接触,所以甜甜只会用它来画直线,于是他就在平面直角坐标系中画出如下的图形:

甜甜的好朋友蜜蜜发现上面的图还是有点规则的,于是他问甜甜:在你画的图中,我给你两个点,请你算一算连接两点的折线长度(即沿折线走的路线长度)吧。
输入
第一个数是正整数N(≤100)。代表数据的组数。
每组数据由四个非负整数组成x1,y1,x2,y2;所有的数都不会大于100。


Output
对于每组数据,输出两点(x1,y1),(x2,y2)之间的折线距离。注意输出结果精确到小数点后3位。

SampleInput

5 0 0 0 1 0 0 1 0 2 3 3 1 99 99 9 9 5 55 5
Sample Output

1.000 2.414 10.646 54985.047 0.000
 

#include<iostream>
#include<map>
#include <algorithm>
#include<string>
#include<stack>
#include<cmath>

using namespace std;
inline double len(double x, double y, double a, double b)
{
	double len = sqrt(pow((fabs(b - y)), 2) + pow(fabs(a - x), 2));
	return len;
}

int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		double x1, y1, x2, y2;
		cin >> x1 >> y1 >> x2 >> y2;
		if (x1 + y1 > x2 + y2)
		{
			int t = x1;
			x1 = x2;
			x2 = t;
			t = y1;
			y1 = y2;
			y2 = t;
		}
		else if (x1 + y1 == x2 + y2)
		{
			printf("%.3lf\n", len(x1,y1,x2,y2));
			continue;
		}
		double sum = 0;
		for (double i = x1 + y1; i < x2 + y2; i++)
			sum += sqrt(i * i + (i + 1) * (i + 1));
		for (double i = x1 + y1 + 1; i < x2 + y2; i ++)
			sum += sqrt(i * i * 2);
		sum += len(x1, y1, x1 + y1, 0)+len(x2,y2,0,x2+y2);
		printf("%.3lf\n", sum);
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值