无限的路
甜甜从小就喜欢画图画,最近他买了一支智能画笔,由于刚刚接触,所以甜甜只会用它来画直线,于是他就在平面直角坐标系中画出如下的图形:
甜甜的好朋友蜜蜜发现上面的图还是有点规则的,于是他问甜甜:在你画的图中,我给你两个点,请你算一算连接两点的折线长度(即沿折线走的路线长度)吧。
输入
第一个数是正整数N(≤100)。代表数据的组数。
每组数据由四个非负整数组成x1,y1,x2,y2;所有的数都不会大于100。
Output
对于每组数据,输出两点(x1,y1),(x2,y2)之间的折线距离。注意输出结果精确到小数点后3位。
SampleInput
5 0 0 0 1 0 0 1 0 2 3 3 1 99 99 9 9 5 55 5
Sample Output
1.000 2.414 10.646 54985.047 0.000
#include<iostream>
#include<map>
#include <algorithm>
#include<string>
#include<stack>
#include<cmath>
using namespace std;
inline double len(double x, double y, double a, double b)
{
double len = sqrt(pow((fabs(b - y)), 2) + pow(fabs(a - x), 2));
return len;
}
int main()
{
int t;
cin >> t;
while (t--)
{
double x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
if (x1 + y1 > x2 + y2)
{
int t = x1;
x1 = x2;
x2 = t;
t = y1;
y1 = y2;
y2 = t;
}
else if (x1 + y1 == x2 + y2)
{
printf("%.3lf\n", len(x1,y1,x2,y2));
continue;
}
double sum = 0;
for (double i = x1 + y1; i < x2 + y2; i++)
sum += sqrt(i * i + (i + 1) * (i + 1));
for (double i = x1 + y1 + 1; i < x2 + y2; i ++)
sum += sqrt(i * i * 2);
sum += len(x1, y1, x1 + y1, 0)+len(x2,y2,0,x2+y2);
printf("%.3lf\n", sum);
}
return 0;
}