思路:由于我们只要丢下一个棋子,其实对于这个棋子的同一行同一列的元素我们已经不需要再去考虑了,就直接考虑下一行下一列了。可能有人会根据这个特性把这同一行和同一列的元素全部标记上已经遍历的标志。可以,但是很麻烦,既然这样搞了我们就需要一个点一个点的进行麻烦的判断,编码起来很麻烦。
这里我们采用考虑行然后遍历列的形式进行遍历,也就是说,只要我这一行里面有一个棋子已经落下了,我们就可以不用遍历这一行了,直接进入下一行,在回溯的时候直接就会在同一行的下一列进行判断了,所以这样会很方便。
这里的模型有点像指数型递归的题目,也就是对于这个位置选择下棋还是不选择下棋。
注意:因为我们的棋子是有限制的,所以要控制棋子的个数,因此在dfs中第二个变量就是对于当前已经下的棋子的个数进行记录。
OK,说了那么多就上代码:
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<algorithm>
#include<stack>
#include<queue>
#include<sstream>
#include<map>
#include<limits.h>
#include<set>
#define MAX 105
#define _for(i,a,b) for(int i=a;i<(b);i++)
#define ALL(x) x.begin(),x.end()
using namespace std;
typedef long long LL;
int n, m, counts = 0, num;
LL A, B;
int res = 0;
char qipan[MAX][MAX];
int st[MAX];
bool flag;
void dfs(int x, int cnt) {
if (cnt == m) {
res++;
return;
}
if (x > n)return;
for (int i = 1; i <= n; i++) {
if (!st[i] && qipan[x][i] == '#') {
st[i] = 1;
dfs(x + 1, cnt + 1);
st[i] = 0;
}
}
dfs(x + 1, cnt);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
while (cin >> n >> m, n > 0 && m>0) {
res = 0;
_for(i, 1, n + 1) {
_for(j, 1, n + 1)
cin >> qipan[i][j];
}
dfs(1, 0);
cout << res << endl;
}
return 0;
}