LLVIP、KAIST、M3FD数据集

LLVIP、KAIST、M3FD数据集
(可见光+红外,双模态数据集,已配准已对齐已清洗,已处理为txt格式,YOLO可直接训练)
电子产品,一经出售,概不退换
算法设计、毕业设计、期刊专利!感兴趣可以联系我。
🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。

### YOLOv8 红外与可见光图像融合方法及实现 #### 背景介绍 人脸红外与可见光图像融合技术旨在利用两种不同波段图像的优势,通过特定算法将两者的信息有效结合。当前主流的融合方法可分为传统融合方法和基于深度学习的融合方法[^1]。 #### 基于YOLOv8的多模态图像处理框架 对于YOLOv8而言,在处理红外与可见光图像融合的任务上,主要依赖其强大的特征提取能力和灵活的架构设计。具体来说: - **模型输入调整**:为了适应双通道或多通道的数据输入需求,需要修改原始YOLOv8的输入层配置,使其能够接收来自两个传感器的不同类型图片作为联合输入。 - **预训练权重迁移**:考虑到RGB图像与红外线图存在较大差异,建议先在大规模标准视觉识别任务(如ImageNet)上完成初步训练后再针对特定应用场景微调参数设置。 - **自定义损失函数构建**:鉴于目标检测任务特性以及跨域数据特点,可能还需要定制化设计一些辅助性的监督信号来指导整个网络更好地捕捉到共同特征表示空间中的有用信息。 #### 实现步骤概述 以下是使用Python编程语言配合PyTorch库实现上述思路的一个简化版代码片段展示: ```python import torch from ultralytics import YOLO # 加载预训练好的YOLOv8模型实例 model = YOLO('yolov8n.pt') # 修改模型结构以支持多模态输入 class MultiModalYOLO(YOLO): def forward(self, x_rgb, x_ir): # 定义新的前向传播逻辑 ... # 准备好用于训练的数据集路径列表 train_dataset_paths = ['path/to/llvip', 'path/to/kaist', 'path/to/m3fd'] for dataset_path in train_dataset_paths: # 对每个公开可用的数据源分别执行加载操作... # 开始正式训练过程 results = model.train(data=train_datasets, epochs=100) ``` 此部分展示了如何创建继承自`ultralytics.YOLO`类的新子类,并重写了它的forward()方法以便接受额外维度上的输入张量;同时也提及到了几个常用的开源RGB+IR数据集合名称及其获取方式[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值