这道题你可以用01背包来做,本来就是对于背包问题的变形而已。
首先,你可以把体力当作价值,把体积当作消耗的总量;你也可以反过来认为,也就是说,把体力当作消耗品,但是把体积当作价值来选。
如果你选择前者,那么我们就必须统计一下在这个有限的体积里我们能够最多消耗多少体力;如果你选择后者,那么我们就统计在这个有限的体力下我们最多能搬多少体积的石头。
这里我们选择后者进行代码演示。前者大家也可以试试。
注意:当我们用数组统计完之后,我们需要再次遍历这个数组,在遇到能够搬取目标体积的情况下,输出现在剩下的体力,然后就停止调动函数,如果没有符合条件的,我们就直接Impossible
上代码:
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<algorithm>
#include<stack>
#include<queue>
#include<sstream>
#include<numeric>
#include<map>
#include<limits.h>
#include<set>
#define MAX 10005
#define _for(i,a,b) for(int i=a;i<(b);i++)
#define ALL(x) x.begin(),x.end()
using namespace std;
using PII=pair<int, int>;
int v, n, c;
int V[MAX];
int C[MAX];
int f[MAX];
int ans = -1;
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
cin >> v >> n >> c;
int flag = 1;
for (int i = 1; i <= n; i++)
cin >> V[i] >> C[i];
for (int i = 1; i <= n; i++) {
for (int j = c; j >= C[i]; j--)
{
f[j] = max(f[j], f[j - C[i]] + V[i]);
}
}
for (int i = 1; i <= c; i++) {
if (f[i] >= v)
{
cout << c - i;
return 0;
}
}
cout << "Impossible"<<endl;
return 0;
}