思路:dp
其实这道题总的来说,就是爬楼梯问题,大家可以转化一下,并且发现一下爬楼梯问题的规律。
爬楼梯问题,基本上题目的状态只有两个,并且是固定的(不排除有变形的爬楼梯题目),递推的过程都是从小到大递推的。
好了,看看这道题,我们对照一下,首先,这里有两种操作,就是对应的两种固定的状态,我们可以通过这两个状态操作把字符串构造出来,再然后,我们这个字符串也是需要从小字符串推到大字符串的,所以这一点也和我们的结论符合,这就是一道变了题目的爬楼梯。
这里的递推关系就不多说了,dp[i]就代表的是构造长度为i的字符串有多少种方案的含义。
其他的步骤,也就是我们所给的zero,one,就代表着每次爬多少楼梯,low到high是我们需要统计的。
注意:在我们进行递推的时候,千万要注意,在循环的时候不要把i最开始初始化为low,因为这里的low并一定是从1开始递推的,而我们的dp数组是需要依次递推过来的,这一点需要注意;
在统计个数的时候,我们需要从low遍历到high这段距离,这一点是题目要求,不要忘记。
还有,在我们爬楼梯的过程中,变量是不明确的,也就是不知道数值是如何的,我们需要有一个if else判断语句,不然只会显示溢出,出现错误。
class Solution {
public int countGoodStrings(int low, int high, int zero, int one) {
int []dp=new int[100010];
dp[0]=1;
for(int i=1;i<=high;i++){
if(i>=zero&&i>=one)
dp[i]=(dp[i-zero]+dp[i-one])%1000000007;
else if(i>=zero&&i<one)
dp[i]=dp[i-zero];
else if(i<zero&&i>=one)
dp[i]=dp[i-one];
}
int ans=0;
for(int i=low;i<=high;i++)
ans=(ans+dp[i])%1000000007;
return ans;
}
}