leetcode 684.冗余连接

思路:并查集

这里的图比较像一种特殊的数据结构,其实也是图论的一种东西,就是基环树,但是这里并不是有向图,而是无向图,所以并不能用那种剪枝操作然后找基环。

看到连通量,我们应该能想到两种方法:一种就是DFS,BFS这样的搜索来判断连通,还有一种就是数据结构里面的一种:并查集。

这两种方法在求连通分块的时候其实各有千秋,并查集比较快,但是有时候处理起来很麻烦;DFS这种搜索反而是比较常用的。这里作者作了一点小总结:

涉及到点的遍历一类的连通量,用DFS这样的搜索比较方便;但是涉及到边的问题的时候,其实用并查集很有用。就好像加点法和加边法求最小生成树那样。

这里用到并查集其实就看到连通量里面有多余的边,而并查集恰好能够通过不断合并的过程判断是不是多余了。

class Solution {
public:
int f[1100];
int find(int u){
    if(f[u]==u)
    return u;
    else
    return f[u]=find(f[u]);
}
void unit(int x,int y){
    int s=f[x];
    if(s==f[y])
    return ;
    else
    f[s]=f[y];
}
    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        int n=edges.size();
        for(int i=1;i<=n;i++){
            f[i]=i;
        }
        vector<int>res;
        for(int i=0;i<n;i++){
            int x=edges[i][0];
            int y=edges[i][1];
            if(find(x)!=find(y)){
                unit(x,y);
            }
            else{
                res.push_back(x);
                res.push_back(y);
                break;
            }
        }
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值