思路:并查集
这里的图比较像一种特殊的数据结构,其实也是图论的一种东西,就是基环树,但是这里并不是有向图,而是无向图,所以并不能用那种剪枝操作然后找基环。
看到连通量,我们应该能想到两种方法:一种就是DFS,BFS这样的搜索来判断连通,还有一种就是数据结构里面的一种:并查集。
这两种方法在求连通分块的时候其实各有千秋,并查集比较快,但是有时候处理起来很麻烦;DFS这种搜索反而是比较常用的。这里作者作了一点小总结:
涉及到点的遍历一类的连通量,用DFS这样的搜索比较方便;但是涉及到边的问题的时候,其实用并查集很有用。就好像加点法和加边法求最小生成树那样。
这里用到并查集其实就看到连通量里面有多余的边,而并查集恰好能够通过不断合并的过程判断是不是多余了。
class Solution {
public:
int f[1100];
int find(int u){
if(f[u]==u)
return u;
else
return f[u]=find(f[u]);
}
void unit(int x,int y){
int s=f[x];
if(s==f[y])
return ;
else
f[s]=f[y];
}
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
int n=edges.size();
for(int i=1;i<=n;i++){
f[i]=i;
}
vector<int>res;
for(int i=0;i<n;i++){
int x=edges[i][0];
int y=edges[i][1];
if(find(x)!=find(y)){
unit(x,y);
}
else{
res.push_back(x);
res.push_back(y);
break;
}
}
return res;
}
};