[OC]计算π

简介

圆周率是周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正数x

圆周率用希腊字母π(读作[paɪ])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

1665年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其 [24]  中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。

2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。 

2021年8月17日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时108天,将著名数学常数圆周率π计算到小数点后62.8万亿位,创下该常数迄今最精确值记录。


圆周率的计算历史

1、公元前20世纪(约公元前1900年至公元前1600年),一块古巴比伦王国的石匾清楚地记载了:圆周率=25/8=3.125,准确位数2。

2、公元前1650年左右,世界上最古老的数学著作之一、古埃及数学著作《莱因德纸草书》﹝Rhind Papyrus﹞是的埃及数学著作,记录了圆的面积是直径的九分之八的平方,即相当于圆周率π= 3.16049…,准确位数2。作者是书记官阿默斯。

3、约公元前800至600年,成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139,准确位数2。

4、约公元前6世纪中叶,圣经列王记上7章23节,记录π=3,准确位数1。犹太的传统一向认定耶利米是列王纪上、下两书的执笔者。

5、公元前3世纪(公元前287年—公元前212年),古希腊阿基米德求出圆周率的下界和上界分别为223/71和22/7,并取它们的平均值3.141851为圆周率的近似值,准确位数3。

6、约公元前2世纪(也有说公元前1世纪),中国最古老的天文学和数学著作《周髀算经》记载“径一而周三”的记载,意即取π= 3,准确位数1。

7、约公元前50年-公元23年,中国西汉经学家刘歆著《三统历谱》,计算出圆周率为3.1547,世称“刘歆率”,准确位数2。

8、公元前20年,古罗马作家、建筑师和工程师维特鲁威著《建筑十书》,记录π=3.125,准确位数2。

9、130年,中国东汉时期杰出的天文学家、数学家、发明家、地理学家、文学家张衡得出约等于√10或5/8(约为3.162)。这个值不太准确,但它简单易理解,准确位数2位。

10、150年,古希腊数学家,天文学家,地理学家和占星家克罗狄斯·托勒密指出π=3.141666…,准确位数4位。

11、250年,中国三国时期吴国天文学家、数学家王蕃依据张衡学说,重制浑天仪,并用勾股定理求出圆周率3.1556,比刘徽求出的较大(刘徽是3.14),比张衡求出的为小(张衡为3.16),准确位数2位。

网络有说“与200年后祖冲之的“祖率”(3.1415926与3.1415927之间)非常接近”,感觉不是很接近。

12、公元263年,中国数学家刘徽用“割圆术”计算圆周率,得到3927/1250=3.14159,准确位数6位。所言“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”包含了求极限的思想,准确位数6位。

13、480年,中国南北朝时期杰出的数学家、天文学家祖冲之首次将圆周率精算到小数后第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献,准确位数8位。在之后的800年里祖冲之计算出的π值都是最准确的,其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的著作中,欧洲称之为Metius' number。

14、499年,印度数学家及天文学家阿耶波多著作《阿里亚哈塔历书》记录π=3.1416,并估出有可能圆周率值是无理数的结论,准确位数4位。原文描述为: 4加上100,再乘以8,再加上62,000,按此规则可逼近直径为20,000的圆之周长值。 ”

15、598年,印度数学家、天文学家婆罗摩笈多指出π=3.162277…,准确位数2位。

16、800年,波斯数学家、天文学家、地理学家、代数与算术的创立人阿尔·花拉子密指出π=3.1416,准确位数4位。

17、1150年,印度数学家 ,天文学家婆什迦罗第二著《历算书》,指出π=3.14156,准确位数5位。《历算书》比较全面系统地介绍了算术、代数和几何知识。

18、1220年,意大利数学家斐波那契指出π=3.141818,准确位数4位。其写于1202年的著作《计算之书》中包涵了许多希腊、埃及、阿拉伯、印度、甚至是中国数学相关内容。

19、1424年,阿拉伯数学家吉亚斯丁·贾姆希德·麦斯欧德·阿尔-卡西著作《圆周论》中的圆周率,是由圆内接正四边形算起,依次使边数加倍,准确到小数点后16位,打破了祖冲之(429~500)保持了近千年的7位小数准确的记录。

20、1596年,德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。


pi其中一种计算方法是,

PI=4*(1-1/3+1/5-1/7+1/9........)

#include<bits/stdc++.h>
using namespace std;
int main(){
	int i,j,n;
	double pi=0.0;
	cout<<"请输入精度:";
	cin>>n;
	for(i=1,j=1;i<=n;i+=2,j=-j)pi+=(j*4.0)/i;
	cout<<"PI≈"<<pi;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值