通俗解释为什么kruskal是对的——适合菜鸡的自我说服(附详细注释并查集实现kruskal代码)

一、kruskal实现步骤

        1.将图中的所有边升序排序

        2.初始化森林集合,现在森林集合中每一个点都是一棵树。

        3.遍历图中的边从小到大地判断边的端点是否在同一棵树上:

                如果在:说明这个边放进去会形成环,放弃这个边,继续遍历。

                如果不在:把这个边放进答案树中

        4.直到森林集合中只剩一棵树,停止遍历,这棵树就是最小生成树。

        5.如果遍历结束后森林中还有至少两棵树,说明这个图没有最小生成树。

二、为什么kruskal是对的

        简单说就是因为取边是从小到大取的,所以加进答案树的边是目前可用的最小且不会生成环的边,这个边一定是答案的一部分。

        

        复杂地举例子来说:比如这个图如果取大边(2,3)先入,因为形成环而舍弃的边就会变成(1,3),也就是说舍弃了更小的边。为求最优解一定是从小判断,如果这个边能放入答案树(也就是放进去不会形成环)那么这个边一定是局部最优解,多个局部最优解合成的一定也是全局的最优解。

三、代码实现(并查集判断环)

#include<bits/stdc++.h>

using namespace std;

const int N = 100010,M = 2*N;

int p[N];//并查集,i的爹是p[i](不一定是祖宗,但用find函数一定能找到祖宗)
int n,m;//n为点数,m为边数

struct edge
{
    int a,b,c;
}edges[M];//存边

int find(int x)
{
    if(p[x] != x)p[x] = find(p[x]);//找祖宗节点的同时更新p数组
    //“如果(我爹)不是自己,那么找(我爹的爹)的同时把(我爹)更新成(我爹的爹)”
    return p[x];
}
bool cmp(const edge &a,const edge &b)
{
    return a.c < b.c;
}//自定义sort比较规则

int main()
{
    cin >> n >> m;
    
    for(int i = 1;i<=n;i++)p[i] = i;//初始化并查集(
    
    for(int i = 0;i<m;i++)
    {
        int a,b,c;
        cin >> a >> b >> c;
        edges[i] = {a,b,c};
    }
    
    sort(edges,edges+m,cmp);//按边长升序排序edges
    
    int ans = 0,cnt = 0;//ans存MST权重和,cnt存MST中边数
    
    for(int i = 0;i<m;i++)
    {
        int a = edges[i].a,b = edges[i].b,c = edges[i].c;
        int aa = find(a),bb = find(b);
        if(aa != bb)
        {
            p[bb] = aa;
            ans += c;
            cnt ++;
        }
    }
    
    if(cnt!=n-1)cout << "impossible";//加入的边不够n-1条,就没有生成MST
    else cout << ans;
    
    return 0;
}

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

 

  • 10
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
城市燃气管道铺设问题可以抽象为一个最小生成树问题,其中Kruskal算法是一种常用的求解最小生成树的算法,也可以用来解决该问题。 Kruskal算法的基本思想是通过贪心策略逐步构建最小生成树。具体实现中,将所有边按照权值从小到大排序,依次选取权值最小的边并加入生成树中。如果选取该边后不会形成环,则加入该边,否则不加入。 在城市燃气管道铺设问题中,每个管道可以看作一条边,每个管道的长度或者建设成本可以看作该边的权值。因此,我们可以将所有管道按照长度或建设成本从小到大排序,然后依次选取管道并加入生成树中。如果选取该管道后不会与已有的管道形成环,则加入该管道,否则不加入。 具体实现中,我们可以使用并查集来判断当前加入的管道是否会形成环。并查集是一种数据结构,可以高效地判断两个元素是否处于同一个集合中。具体实现中,我们可以将每个节点看作一个元素,并将它们初始时都视为一个独立的集合。每次加入一条管道时,我们可以判断该管道的两个端点是否处于同一个集合中,如果不是,则将这两个端点所在的集合合并成一个集合,否则说明加入该管道会形成环,不加入即可。 下面是使用并查集实现Kruskal算法的伪代码: ``` function Kruskal(G, weights): // G为图的邻接表表示,weights为边的权值 n = G中节点的个数 edges = 将所有边按照权值从小到大排序 uf = 初始化并查集,每个节点都是一个单独的集合 MST = 空的生成树 for edge in edges: u, v = edge的两个端点 if uf.find(u) != uf.find(v): // 如果u和v不在同一个集合中,即加入该边不会形成环 MST.add(edge) // 加入该边 uf.union(u, v) // 将u和v所在的集合合并成一个集合 if MST中边的数量 == n - 1: // 如果生成树中边的数量达到n-1,则已经构建出了最小生成树 break return MST ``` 以上是一种使用并查集实现Kruskal算法的思路。在实际应用中,还需要考虑一些细节问题,例如如何表示图的邻接表、如何将边按照权值从小到大排序等,具体实现中需要进行适当的调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值