7-3 最小生成树-kruskal (10 分)(思路+详解+并查集详解+段错误超时解决)宝 Come

一:前言

本题需要用到并查集的知识,建议先学完并查集后再看看本题

二:题目

题目给出一个无向连通图,要求求出其最小生成树的权值。
温馨提示:本题请使用kruskal最小生成树算法。
输入格式:
第一行包含两个整数 N(1<=N<=1x10 6
),M(1<=M<=1x10 6
) 表示该图共有 N 个结点和 M 条无向边。接下来 M 行每行包含三个整数 X ,表示有一条长度为 Z 的无向边连接结点 X
输出格式:
输出一个整数表示最小生成树的各边的长度之和。

输入样例:

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出样例:

7

三:介绍kruskal

1:介绍kruskal

在这里插入图片描述
在这里插入图片描述

2:演示算法过程就是并查集的过程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

形成环:即顶点3和5的根节点为同一个结点那么就不用合并
在这里插入图片描述
在这里插入图片描述

四:思路

思路:
1.用kruskal算法是从边的角度出发的每次选取最小的边
2.这里涉及到并查集,回归到本题就是先将每个顶点当成一个联通分量(也是一棵树)
并设置其父节点都为 -1,表示根节点,如果两个连通分量根节点不同,那么将其合并,
同时更新其中一个连通分量的根节点为另一个连通分量的根节点
那么到最后就会形成一个根节点,此时图的各个结点也是连通的,我们在每次计算是否合并
两个连通分量的时候,我们就已将权值进行相加,那么这样的结果是最小生成树

3.那么我们就需要对边进行升序排序了,按顺序每次选取最小的边

4.这里考虑到还要对权值进行升序处理,而且是按一组数据中的某个元素 升序处理
那么这里我们就不再用邻接矩阵和邻接表来存数据了,用结构体数组来存每组数据
同时通过重写sort方法来处理升序问题

5.那么通过上方的分析你还有另外一个收获,判断图是否连通,哈哈哈,如果最后的father数组
中每个结点的根节点都是同一个值 那么说明他是连通的 (这里的结点指的是father数组当中的下标)

五:上码

/**
 	思路:
	 1.用kruskal算法是从边的角度出发的每次选取最小的边
	 2.这里涉及到并查集,回归到本题就是先将每个顶点当成一个联通分量(也是一棵树) 
	   	并设置其父节点都为 -1,表示根节点,如果两个连通分量根节点不同,那么将其合并,
	 	同时更新其中一个连通分量的根节点为另一个连通分量的根节点
		 那么到最后就会形成一个根节点,此时图的各个结点也是连通的,我们在每次计算是否合并
		 两个连通分量的时候,我们就已将权值进行相加,那么这样的结果是最小生成树 
		 
		 	 
	 3.那么我们就需要对边进行升序排序了,按顺序每次选取最小的边
	 
	 4.这里考虑到还要对权值进行升序处理,而且是按一组数据中的某个元素  升序处理
	 	那么这里我们就不再用邻接矩阵和邻接表来存数据了,用结构体数组来存每组数据
		 同时通过重写sort方法来处理升序问题 
		 
	5.那么通过上方的分析你还有另外一个收获,判断图是否连通,哈哈哈,如果最后的father数组
	只输出一个值 那么说明他是连通的		 
	
*/ 

#include<bits/stdc++.h>
using namespace std;
#define maxx 1000010//这里需要7位数

//定一结构体数组来存每组数据 
struct Node{
	int from;
	int to;
	int val; 
	
}node[maxx]; 

int father[maxx];

bool sort_val(Node a,Node b){
	return a.val < b.val;
}

//查询元素的根节点 
int find( int a ){
	int r=a;
    while(father[r]!=r)
    r=father[r];		//找到他的前导结点
    int i=a,j;
    while(i!=r){	//路径压缩算法
       j=father[i];	//记录x的前导结点
       father[i]=r;	//将i的前导结点设置为r根节点
       i=j;
    }
    return r;
}


//合并根节点不同的联通分量 
void merg(int a,int b){
	
//	int a = find(x);//查询x的根节点 
//	int b = find(y);//查询y的根节点 
	
//	if(a != b){
		father[a] = b;	
//	} 	
}

int main(){
	
	int n,m;
	int sum = 0;
	
	//cin >> n >> m;
	scanf("%d%d",&n,&m);
    
	//初始化father数组 将其每个顶点的根节点设置为自己的节点号
	for(int i = 1; i <= n; i++){
		father[i] = i;
	} 
	
	for(int i = 0; i < m; i++){		
		//cin >> node[i].from >> node[i].to >> node[i].val;
      scanf("%d%d%d",&node[i].from,&node[i].to,&node[i].val);
	}
		
	sort(node,node+m,sort_val);
	
//	for(int i = 0; i < m; i++){
//		cout << node[i].val << endl;
//	}

    int count = 0;
    
	for(int i = 0; i < m; i++){		
        if(count == n - 1){//n个顶点需要 n - 1边
            break;
        }
		int a = find(node[i].from);
		int b = find(node[i].to);
		if(a != b){
			father[a] = b;
			sum += node[i].val;			
		    count++;
        }	
       
	}
	printf("%d",sum);
    // cout << sum; 	
}
 


在这里插入图片描述

六:知识速递(对并查集不了解的兄弟们可以了解下)

这道题用到了并查集,所以我就学了一下并查集,所以把自己的见解也分享给大家(建议 先看视频 再浏览 博客 再自己敲一遍 学习效率高而已,我总是乱着来 以为看几篇博客就会了,其实最后还是老老实实 去B站看大佬讲解视频 才搞懂)

1:并查集

并查集是一种树型的数据结构,
用于处理一些不相交集合(Disjoint Sets)的合并及查询问题
1:查询元素a和元素b是否属于同一组
2:合并元素a和元素b所在组 (将有相同元素的元素 合并为一个组 )
3:需要初始化一个数组存放父节点,其索引值 代表元素

2:并查集的AC代码(模板`)

/*
并查集是一种树型的数据结构,
用于处理一些不相交集合(Disjoint Sets)的合并及查询问题

1:查询元素a和元素b是否属于同一组
2:合并元素a和元素b所在组 (将有相同元素的元素 合并为一个组 )
3:需要初始化一个数组存放父节点,其索引值 代表元素
*/

#include<bits/stdc++.h>
using namespace std;
 
int father[100]; 
 

int find( int x){
	
	while( x != father[x] )
	{
		x = father[x];
	}
		
	return x;		
} 

void merge(int x,int y)
{
	int a = find(x);//x的根节点为a 
	int b = find(y);//y的根节点为b
	if( a != b )
	father[b] = a;//那么将b的根节点  设为 a 
	 
}


int main()
{
	//初始化: 我们将每一个结点的前导结点设置为自己,
	//如果在merge函数时未能形成连通,将独立成点
	for( int i = 0; i < 10; i++ )
	{
		father[i] = i;
	}
	

上方的find函数 效率不高,当处理大数据时,使用并查集查找时,如果查找次数很多,那么使用朴素版的查找方式肯定要超时。比如,有一百万个元素,每次都从第一百万个开始找,这样一次运算就是106,如果程序要求查找个一千万次,这样下来就是1013,肯定要出问题的。

所以有了压缩路径的算法(就是一棵树只有叶节点)

int find( int a ){
	int r=a;
    while(Father[r]!=r)
    r=Father[r];		//找到他的前导结点
    int i=a,j;
    while(i!=r){	//路径压缩算法
       j=Father[i];	//记录x的前导结点
       Father[i]=r;	//将i的前导结点设置为r根节点
       i=j;
    }
    return r;
}

七:超时和段错误解决

1.超时建议将cin cout改为scanf 和printf
2.段错误建议将上方的开辟最大值调至 七位数

### 回答1: Prim算法是一种求解最小生成树的贪心算法,它的基本思想是从一个点开始,每次选择一个与当前生成树距离最近的点加入生成树中,直到所有点都被加入为止。具体实现时,可以使用一个优先队列来维护当前生成树与未加入生成树的点之间的边的权值,每次选择权值最小的边加入生成树中。时间复杂度为O(ElogV)。 ### 回答2: Prim算法是一种用于解决最小生成树问题的贪心算法最小生成树问题是一个很经典的问题,它的主要应用是在网络优化、城市规划等领域。在这些应用中,我们需要用图来表示一组节点和它们之间的带权边的关系。最小生成树问题就是在这个图中找到一棵包含所有节点的树,并且它的边权之和最小。 Prim算法的基本思想是从一个任意节点开始,逐步加入新的节点和边,最终构成完整的最小生成树。具体步骤如下: 1. 从已有的节点中选择一个任意节点作为起点,加入到最小生成树中。 2. 将已加入最小生成树的节点的所有相邻边添加到一个待选边的集合中。 3. 选择待选边集合中权值最小的边,如果这条边的另外一个节点不在最小生成树中,那就把这个节点和边都加入到最小生成树中。 4. 重复步骤2和步骤3直到所有的节点都被加入到最小生成树中为止。 Prim算法是一种贪心算法,它每次只选择权值最小的边加入到最小生成树中。由于要找到所有节点的最小生成树,因此Prim算法的时间复杂度是O(N^2)。但是通过使用堆数据结构,可以将Prim算法的时间复杂度降低到O(MlogN)。 总之,Prim算法是一种高效的解决最小生成树问题的方法,它的思想简单,实现容易,并且具有很好的扩展性。在实际应用中,它可以用于网络优化、城市规划等领域。 ### 回答3最小生成树( Minimum Spanning Tree ),指的是在一个连通加权无向图中,选出一棵生成树,使得树上所有边权和的值最小。Prim算法是求解最小生成树的经典算法之一,其基本思想是从一个点开始,逐步扩充最小生成树集合,直到所有点都被包含在树中。 Prim算法的具体实现过程如下: 1.选取一个定点作为起始点加入最小生成树集合,并将其标记为已加入树的节点。 2.从该节点开始遍历其所有邻接节点,寻找与树上节点连通的最小边,并将其对应的邻接节点加入到最小生成树集合中。 3.重复步骤2,直到所有的节点都被标记为已加入树的节点。 4.由最小生成树集合中的节点和边构成的图即为所求最小生成树。 而具体实现时,我们可以使用一个优先队列(Priority Queue)来存储所有还未被加入树的节点,并按照其离树的距离(即与树上节点连通的最小边权值)从小到大排序。每次从队列中取出距离最小的节点,将其加入最小生成树集合中,并遍历其所有邻接节点,将其对应的边权值加入到队列中,并根据优先级重新排序。 最后,我们可以用数组parent[]来记录每个节点在最小生成树中的父节点,以便后续构造最小生成树。 总体而言,Prim算法具有时间复杂度为O(E*logV),其中E为边的数量,V为节点的数量。因此,在实际应用中,它被广泛应用于图的最小生成树问题的求解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值