问题描述:
在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3。
请找出能放在给定直方图里面积最大的矩形,它的边要与坐标轴平行。对于上面给出的例子,最大矩形如下图所示的阴影部分,面积是10。
输入格式:
第一行包含一个整数n,即矩形的数量(1 ≤ n ≤ 1000)。
第二行包含n 个整数h1, h2, … , hn,相邻的数之间由空格分隔。(1 ≤ hi ≤ 10000)。hi是第i个矩形的高度。
输出格式:
输出一行,包含一个整数,即给定直方图内的最大矩形的面积。
样例输入:
6
3 1 6 5 2 3
样例输出:
10
AC代码:
#include <iostream>
using namespace std;
int arr[1001];
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
cin>>arr[i];
}
int min=0;
int s1=0;
int s2=0;
for (int i=0;i<n;i++)
{
min=arr[i];
for(int j=i;j<n;j++)
{
if(min>arr[j])
min=arr[j];
s1=(j-i+1)*min;
if(s2<s1)
s2=s1;
}
}
cout<<s2;
return 0;
}