LDA主题模型Python实现

本文介绍了如何通过Python的gensim库实现LDA主题模型,包括数据预处理、构建词典、生成词袋模型以及评估模型的连贯性。同时,展示了如何创建词云图并可视化LDA模型结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        如果你有一个文本文件,那么以下这段代码可以帮助你实现LDA主题模型。

import jieba

# from nltk.corpus import stopwords
import pyLDAvis.gensim_models
import wordcloud
from gensim.models.coherencemodel import CoherenceModel
from gensim.models.ldamodel import LdaModel
from gensim.corpora.dictionary import Dictionary

text_h = ""
with open("temp.txt", "r", encoding="utf-8") as f:
    for ann in f.readlines():
        ann = ann.strip("\n")  # 去除文本中的换行符
        print(ann)
        text_h += ann
# text_h = word_tokenize(text_h)
text_h = jieba.cut(text_h, cut_all=True)
"""
for i in range(len(text_h)):
    text_h[i] = text_h[i].lower()
text_h = list(filter(lambda x: not str(x).isdigit(), text_h))
print(text_h)
"""
interpunctuations = [
    ",",
    "。",
    ":",
    ";",
    "?",
    "(&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值