多速柔性制造与多AGV运输集成低碳调度优化

参考来源:

Liu, Zhengchao. 2022. 《The Low-Carbon Scheduling Optimization of Integrated Multispeed Flexible Manufacturing and Multi-AGV Transportation》. Processes 10(10): 1944.

DOI:10.3390/pr10101944

摘要

随着低碳可持续制造成为当前制造业的主流发展方向,我国传统重工业制造企业迫切需要转型。对于本文调研的重型水泥装备制造企业而言,由于调度混乱,在制造运行过程中存在大量的能源浪费。其中,多速度、多功能加工以及多台自动导引车(多AGV )的运输是主要影响因素。因此,本文提出了一种集成多速柔性制造和多AGV运输( LCSP-MSFM & MAGVT)的新型低碳调度优化问题。

首先,以最小化综合能耗和最大完工时间为目标,建立混合整数规划( MIP )模型。在MIP模型中,构建了时间节点模型来描述每个工件的完成时间,建立了基于机器和AGV运行过程的综合能耗模型。然后,估计一个具有低碳调度启发式策略的分配算法( EDA-LSHS )来求解所提出的MIP模型。在EDA - LSHS中,采用一种新的概率模型的EDA作为主要算法,并给出LSHS来指导EDA的搜索方向。最后,通过实例验证了所提方法的优化效果和实际性能。实验结果表明,将所提方法应用于实际生产,平均可节约43.52 %的综合能耗和64.43 %的完工时间,有效扩大了所调研企业的低碳制造能力。

  1. 引言

根据上述分析,本文提出一种集成多速柔性制造和多AGV运输的新型低碳调度问题( LCSP-MSFM & MAGVT)。本文研究的重点是工件加工顺序、机器加工状态与AGV路径之间的关系,以实现最优低碳调度。本文的贡献如下:

  1. 建立了LCSP - MSFM & MAGVT的混合整数规划( MIP )模型。MIP模型的目标是同时优化制造过程中的综合能耗和最大完工时间。

  1. 在提出的MIP模型中,建立了时间节点模型来描述每个工件的完成时间,并建立了基于机器和AGV运行过程的综合能耗模型。

  1. 提出了一种基于低碳调度启发式策略的分布估计算法( EDA-LSHS )来求解所提出的MIP模型。在EDA中,建立了一种新的概率模型来生成满足约束条件的调度方案。在LSHS中,提出针对机器加工、AGV负载状态、AGV空载运输的能耗优化策略,指导EDA的搜索方向。

本文的余下部分安排如下:下一节对低碳制造的调度优化和考虑运输的制造调度的文献进行了综述。提出的MIP模型在第3节中详细建立。第四部分主要介绍了所提出的EDA - LSHS。然后,在第5节进行了基于LCSP - MSFM & MAGVT的案例研究,以验证所提方法的实际性能和优化效果。最后,在第6节给出了针对该问题的结论和进一步的研究展望。

2.

3.

本部分基于调研的重型水泥装备制造企业,详细介绍了多速柔性制造和多AGV运输的低碳调度问题。然后,建立考虑综合能耗和完工时间的MIP模型。本文所有注释均在《名录》中。

3.1问题描述

在被调查企业的实际生产车间N,机器工作在柔性状态(机器的速度和功能可以调节),运输设备为多台AGV。多速柔性机械具有加工和待机两种状态。AGV的运行过程分为运输(空载和负载)和待机(空载和负载)。上述柔性制造环境下的作业任务包括以下3个环节:( 1 )规划AGV路径,实现工件在机器间的运输;( 2 )将工件安排在合适的机床上加工;( 3 )通过调节速度来控制机床的加工功率和加工时间。本文提出LCSPMSFM & MAGVT的双重目标:( 1 )最小化机器和AGV运行的综合能耗;( 2 )最小化完工时间。

图1展示了被调查企业的车间工作布局。生料仓存储多个待加工工件和3台AGV。然后,最终仓库存储加工好的工件和完成任务的AGV。加工车间有6台多速机器,每台机器有一个缓冲区用来停放AGV。缓冲器可以实现工件在AGV上的上下料。为进一步展示该车间的作业过程,对该部分过程进行如下详细说明:( 1 )首先,AGV1空载运行至机器1的缓冲区,等待工件1全部加工完毕。之后,AGV1将工件1运送到机器4的缓冲区域并保持装载状态,直到工件在机器4上加工完成。然后,AGV1从负载待机切换到待机状态的无负载待机,直到工件1加工完毕。最后,AGV 1执行工件1 (工件1运至最终仓库)的附加加工。( 2 ) AGV2首先将工件1运输到机器1的缓冲区域。然后,AGV2空载运行到机器5的缓冲区,空载等待工件2加工完毕。最终,AGV 2执行工件2的附加加工。上述AGV作业在时间上是并行的。

3.2问题假设

  1. 每台机器一次只能加工一个工件,每个工件在同一时间只能由一台机器加工。

  1. 每个AGV一次只能运输一个工件,每个工件在同一时间只能由一个AGV运输。

  1. 如果Oi ( j-1 )和Oij在同一台机器上加工,则Oij不需要通过AGV运输。

  1. 每个工件工序可供选择的机器就是它可用的机器。

  1. 所有AGV在完工期间都完全充电且无故障。

  1. 假设原始仓库为虚拟机M0,最终仓库为虚拟机Mm + 1;每个工件都有额外的运输将成品工件运送到最终仓库。

  1. 所有AGV和工件的起点在原材料仓库,终点在成品仓库。

  1. 机器仅在其上的第一个工件到达时开启,仅在其上的最后一个工件完成时关闭。

3.3

3.3.1Agv的空载状态启动时间

运输任务空载状态Rij的开始时间分为两种情况,如式( 1 )所示:首先,当Rij为对应AGV上的第1个运输任务时,其空载状态开始时间为0;其次,根据其他情况下的公式计算Rij空载状态的开始时间:

3.3.2Agv的空载状态结束时间

Rij空载状态结束时间由式( 2 )表示。有两种情况使得Rij不存在空载运输状态:( 1 )前一个相邻工序Oi ( j-1 )与Rij对应的工序Oij在同一台机器上加工;( 2 ) Rij既是对应工件的第一道工序,也是对应AGV的第一道运输任务。其他情况下,Rij的空载状态结束时间大于AGV空载到达时间和之前Oi ( j-1 )的加工完成时间。

3.3.3Agv的负载状态启动时间

Rij的负荷状态开始时间由式( 3 )表示。AGV只有空载和负载两种状态。当空载状态结束后,AGV立即进入负载状态:

3.3.4AGV负载结束时间

Rij的负载状态结束时间分为两种情况,如式( 4 )所示:首先,前一个相邻工序Oi ( j-1 )和工序Oij在同一台机器上加工时,Rij不存在负载状态;第二,其他情况下AGV负载到达时间和工序Oi′j′的加工完成时间越大,Rij的负载状态结束时间越大。通过式( 5 )计算Oi′j′的加工完成时间,其中Oi′j′在Oij对应的机器上先于Oij加工。

3.3.5机器加工状态的开始时间

Oij的开始时间包括两种情况,如式( 6 )所示:当Oi ( j-1 )和Oij在同一台机器上加工时,Oij的开始时间等于过程Oi′j′的结束时间;其他情况下,Oij的开始时间等于运输任务Rij的负荷状态结束时间。

3.3.6机器加工状态结束时间

Oij的结束时间等于Oij的开始时间与其在对应机器上的加工时间之和,如式( 7 )所示:

3.4综合能耗模型

本节在上述时间节点模型的基础上建立综合能耗模型来表示包含机器(加工和待机状态)和AGV (负载运输、空载运输、负载待机、空载待机状态)的能耗。

3.4.1机器运行过程的能耗

机器运行的能耗可以分为待机和加工两部分。

(1)机器待机状态的能耗

Oij的机器待机能耗如式( 8 )所示。特别地,当工序为附加工序Oi ( Ni + 1 )时,不存在机器待机能耗。

(2)机器的加工状态的能耗

Oij的加工能耗用式( 9 )表示:

(3)机器运行的总能耗

基于加工和待机两种状态,利用式( 10 )计算机器运行的总能耗:

3.4.2Agv操作的能耗

在AGV的运行过程中,AGV有时需要空载运输来收集工件。空载待机时间发生在工件尚未完成上一道加工工序时。当工件装载完成后,AGV将工件运送到目标机器。如果目标机正在加工另一个工件,则产生负载待机时间。因此,上述4种状态对应的能耗是在AGV运行过程中产生的。

(1)AGV空载运输的能耗

通过AGV空载运输时间乘以AGV空载运输功率计算AGV空载运输能耗。Rij的空载运输时间由式( 11 )计算。然后,利用式( 12 )计算Rij的空载运输能耗:

(2)AGV的负载运输能耗

AGV的负载运输能耗通过负载运输时间乘以AGV的负载运输功率来计算。式( 13 )表示负荷运输时间Rij的计算。则Rij的负荷输送能耗计算如式( 14 )所示:

(3)AGV空载待机状态的能耗

通过AGV空载待机时间乘以AGV空载待机功率计算AGV空载待机能耗。特别地,利用式( 15 )计算Rij的空载待机时间。然后,利用式( 16 )计算Rij的空载待机能耗:

(4)AGV负载待机状态的能耗

AGV的负载待机能耗通过负载待机时间乘以AGV的负载待机功率来计算。式( 17 )表示Rij的负荷待机时间计算,因此,Rij的负荷待机能耗计算如式( 18 )所示:

(5)AGV运行过程的总能耗

所有运输任务的总能耗由式( 19 )计算。

3.4.3车间综合能耗

通过式( 20 )计算车间内包括机器和AGV运行过程的综合能耗:

3.5混合整数规划模型的建立

其中,目标1为最小化完工时间,目标2为最小化完工时间内机器和AGV运行过程的总综合能耗。特别地,通过将完工时间和综合能耗转化为成本,将调度优化问题由双目标转化为单目标。成本函数如下:

式( 23 )中,λ为目标函数中综合能源消费总量的权重系数。决策者通过实际需求调整λ,使产品满足最优情况,达到低碳调度的目的。CT表示平均单位加工时间价格,CE表示单位能耗价格。

MIP模型的约束条件如下:

式( 24 )表示经过工序序列加工的工件。式( 25 )是一次只能加工一个工件的机器。式( 26 )为一次只能承担一次运输任务的AGV。式( 27 )为AGV需要到达机器的空载状态结束,机器上的工件完成。式( 28 )表示空载状态结束后立即进入负载状态的AGV。式( 29 )为需要到达机器的AGV负载状态结束,机器处于空闲状态。式( 30 )即为AGV负载状态结束后可以加工工件。式( 31 )为工件不可中断的加工状态。式( 32 )表示每个运输任务最多选择一个AGV。式( 33 )是每个工件最多选择一个机器加工工序中的一个的工序。式( 34 )为每个工件最多选择一台AGV停靠在一台机器旁边的工序。

决策变量的约束条件如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱佩棋(代码版)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值