打水问题。

题目:打水问题。N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,
请安排一个合理的方案使得所有人的等待时间之和尽量小。
提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,
则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间  =  0  +  1  +  (1  +  4)  =  6
第二个龙头打水的人总等待时间  =  0  +  2  =  2
第三个龙头打水的人总等待时间  =  0  +  3  =  3
所以总的等待时间  =  6  +  2  +  3  =  11
* 输入:
        第一行两个正整数N  M  接下来一行N个正整数Ti。 N,M< =1000,Ti< =1000 
* 输出:
        最小的等待时间之和。(不需要输出具体的安排方案)


题解:由题意得,先将打水时间由小到大的排序,再进行分组,而最后同组数的人数的打水时间不相加即可。

文字描述描述不太能清楚理解,直接看代码:


#define _CRT_SECURE_NO_WARNINGS  1
#pragma warning(disable:6031)
#include <stdio.h>
int a[1001] = { 0 };
int main()
{
    int N = 0;
    int M = 0;
    int sum = 0;
    int i = 0;
    int j = 0;
    int t = 0;
    printf("输入人数和水龙头数:\n");
    scanf("%d%d", &N, &M);
    printf("输入%d人的打水时间:\n", N);
    while ((N != 0) && (M != 0))
    {
        for (i = 1; i <= N; i++)
        {
            scanf("%d", &a[i]);//将输入的时间存入数组a中
        }
        for (i = 1; i < N; i++)//冒泡排序,将输入的时间按升序排序
        {
            for (j = 1; j < N - i; j++)
            {
                if (a[j] > a[j + 1])
                {
                    t = a[j];
                    a[j] = a[j + 1];
                    a[j + 1] = t;
                }
            }
        }
        for (i = 1; i <= N - M; i++)//不计后一次排队打水的M个人即最后面人的打水时间
        {
            a[i + M] = a[i + M] + a[i];//隔M个人加,算出a[1+M]改变原本a[i+M]的值
            sum = sum + a[i];
        }
        printf("最小的等待时间之和为:\n%d\n", sum);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

剁椒排骨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值