题目:打水问题。N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,
请安排一个合理的方案使得所有人的等待时间之和尽量小。
提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,
则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
第二个龙头打水的人总等待时间 = 0 + 2 = 2
第三个龙头打水的人总等待时间 = 0 + 3 = 3
所以总的等待时间 = 6 + 2 + 3 = 11
* 输入:
第一行两个正整数N M 接下来一行N个正整数Ti。 N,M< =1000,Ti< =1000
* 输出:
最小的等待时间之和。(不需要输出具体的安排方案)
题解:由题意得,先将打水时间由小到大的排序,再进行分组,而最后同组数的人数的打水时间不相加即可。
文字描述描述不太能清楚理解,直接看代码:
#define _CRT_SECURE_NO_WARNINGS 1
#pragma warning(disable:6031)
#include <stdio.h>
int a[1001] = { 0 };
int main()
{
int N = 0;
int M = 0;
int sum = 0;
int i = 0;
int j = 0;
int t = 0;
printf("输入人数和水龙头数:\n");
scanf("%d%d", &N, &M);
printf("输入%d人的打水时间:\n", N);
while ((N != 0) && (M != 0))
{
for (i = 1; i <= N; i++)
{
scanf("%d", &a[i]);//将输入的时间存入数组a中
}
for (i = 1; i < N; i++)//冒泡排序,将输入的时间按升序排序
{
for (j = 1; j < N - i; j++)
{
if (a[j] > a[j + 1])
{
t = a[j];
a[j] = a[j + 1];
a[j + 1] = t;
}
}
}
for (i = 1; i <= N - M; i++)//不计后一次排队打水的M个人即最后面人的打水时间
{
a[i + M] = a[i + M] + a[i];//隔M个人加,算出a[1+M]改变原本a[i+M]的值
sum = sum + a[i];
}
printf("最小的等待时间之和为:\n%d\n", sum);
}
return 0;
}