希望我们都能对抗生活的苦难,在乌云周围突破阴霾积极的生活
—— 24.3.16
删除有序数组中的重复项
提示
给你一个 非严格递增排列 的数组
nums
,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回nums
中唯一元素的个数。考虑
nums
的唯一元素的数量为k
,你需要做以下事情确保你的题解可以被通过:
- 更改数组
nums
,使nums
的前k
个元素包含唯一元素,并按照它们最初在nums
中出现的顺序排列。nums
的其余元素与nums
的大小不重要。- 返回
k
。判题标准:
系统会用下面的代码来测试你的题解:
int[] nums = [...]; // 输入数组 int[] expectedNums = [...]; // 长度正确的期望答案 int k = removeDuplicates(nums); // 调用 assert k == expectedNums.length; for (int i = 0; i < k; i++) { assert nums[i] == expectedNums[i]; }如果所有断言都通过,那么您的题解将被 通过。
示例 1:
输入:nums = [1,1,2] 输出:2, nums = [1,2,_] 解释:函数应该返回新的长度2,并且原数组 nums 的前两个元素被修改为 1, 2 不需要考虑数组中超出新长度后面的元素。示例 2:
输入:nums = [0,0,1,1,1,2,2,3,3,4] 输出:5, nums = [0,1,2,3,4] 解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。不需要考虑数组中超出新长度后面的元素。提示:
1 <= nums.length <= 3 * 104
-104 <= nums[i] <= 104
nums
已按 非严格递增 排列
方法一.暴力遍历
思路:
由于是有序的,那么就可以遍历数组,找相邻两个数是否相等;
如果相等那么就把数组后面的元素往前移动;同时numsSize–;
注意:由于遍历数组时候,后面元素往前移动了,所以遍历的元素下标i–;
class Solution {
int removeDuplicates(int* nums, int numsSize)
{
//控制号结束条件即可!!
for(int i = 0;i<numsSize-1;i++){
//如果相邻的元素相等,那么就后面覆盖前面的元素
if(nums[i] == nums[i+1]){
for(int j = i;j<numsSize-1;j++){
nums[j] = nums[j+1];
}
numsSize--; //覆盖结束后,数组元素个数-1
i--; //由于后面的值覆盖前面的值,所以下标要更新
}
}
return numsSize;
}
方法二.双指针
关键字:原地修改
模式识别:需要保存可覆盖位置和观测位置,利用双指针
class Solution {
public int removeDuplicates(int[] nums) {
int numsLength = nums.length;
if (numsLength == 0) {
return 0;
}
int i = 1;
int j = 1;
while (i < numsLength) {
if (nums[i] != nums[i - 1]) {
nums[j] = nums[i];
j++;
}
i++;
}
return j;
}
}
方法三.额外数组
假设可以使用额外空间
复制不同的元素
数组已经进行排序,所以直接检测该元素与下一个元素是否相同,若是前一个与后一个不同,则存储在新数组中
时间复杂度:O(n)
空间复杂度:O(n)
class Solution {
public int removeDuplicates(int[] nums) {
int numsLength = nums.length;
if (numsLength == 0) {
return 0;
}
int[] temp = new int[];
//先给零时数组一个值
temp[0] = nums[0];
int cur = 0; //指向零时数组的下标
//从nums[1]开始与临时数组的元素比较,不相同的直接放进去temp
for(int i = 1;i<numsSize;i++){
if(nums[i] == temp[cur]){
continue;
}else{
temp[++cur] = nums[i]; //注意控制下标
}
}
//将临时数组拷回去
for(int i = 0;i<cur+1;i++){
nums[i] = temp[i];
}
return cur+1;
}