在谷底也要开花,在海底也要望月
—— 24.3.24
一、基础地图使用
1.基础地图演示
掌握使用pyecharts构建基础的全国地图可视化图表
通过导入pyecharts模块中的一个Map方法,通过它可以得到一个地图对象
数据的结构都是列表,列表中嵌套一个个元组对象,存储的是对象和地图
在写的时候要写上xx省/市
# 演示地图可视化案例
# 导入地图的包
from pyecharts.charts import Map
# 导入绘制属性的包
from pyecharts.options import VisualMapOpts
# 准备地图对象
map = Map()
# 准备数据 是一个元组列表,每一个元组第一个元素时省份,第二个元素是相关的数值
# !!!在写的时候要写上xx省/市
data = [
("北京市",99),
("上海市",199),
("湖南省",299),
("台湾省",399),
("广东省",499)
]
# 添加数据:通过map对象调用add方法添加数据,默认也是中国地图
map.add("测试地图",data,"china")
# 绘图
map.render()
2.视觉映射器 设置全局选项
# 设置全局选项
map.set_global_opts(
visualmap_opts=VisualMapOpts(
is_show=True,
# 允许手动校准范围
is_piecewise=True,
pieces=[
{"min": 1, "max": 9, "label": "1-9", "color":"#CCFFFF"},
{"min": 10, "max": 99, "label": "10-99", "color": "#FF6666"},
{"min": 100, "max": 500, "label": "100-500", "color": "#990033"},
]
)
)
3.运行结果
颜色的代码在ab173网站中,前端按钮的颜色对照表,找到颜色对应的代码
二、疫情地图—国内疫情地图
1.处理数据
# 演示全国疫情可视化地图的开发
import json
from pyecharts.charts import Map
from pyecharts.options import *
# 读取数据文件
f = open("E:\python.learning\地图数据\疫情.txt","r",encoding="utf-8")
data = f.read() # 全部数据
# 关闭文件
f.close()
# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data) # 基础数据字典
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]
# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = [] # 绘图需要用到的数据列表
for province_data in province_data_list:
province_name = province_data["name"] # 省份名称
province_confirm = province_data["total"]["confirm"] # 确诊人数
data_list.append((province_name,province_confirm))
2.设置地图
# 创建地图对象
map = Map()
# 添加数据
map.add("各省份确诊人数",data_list,"china")
# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
title_opts=TitleOpts(title="全国疫情地图"),
visualmap_opts=VisualMapOpts(
is_show = True, # 是否显示
is_piecewise = True, # 是否分段
pieces=[
{"min":1,"max":99,"lable":"1~99人","color":"#CCFFFF"},
{"min": 100, "max": 999, "lable": "100~999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "10~4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000~9999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
# 绘图
map.render("全国疫情地图.html")
3.整体代码
"""
演示全国疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *
# 读取数据文件
f = open("D:/疫情.txt", "r", encoding="UTF-8")
data = f.read() # 全部数据
# 关闭文件
f.close()
# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data) # 基础数据字典
# 从字典中取出省份的数据,通过字典对象的层次结构
province_data_list = data_dict["areaTree"][0]["children"]
# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = [] # 绘图需要用的数据列表
for province_data in province_data_list:
province_name = province_data["name"] # 省份名称
province_confirm = province_data["total"]["confirm"] # 确诊人数
data_list.append((province_name, province_confirm))
# 创建地图对象
map = Map()
# 添加数据
map.add("各省份确诊人数", data_list, "china")
# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
title_opts=TitleOpts(title="全国疫情地图"),
visualmap_opts=VisualMapOpts(
is_show=True, # 是否显示
is_piecewise=True, # 是否分段
pieces=[
{"min": 1, "max": 99, "lable": "1~99人", "color": "#CCFFFF"},
{"min": 100, "max": 999, "lable": "100~9999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "1000~4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000~99999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
# 绘图
map.render("全国疫情地图.html")
允许html程序:
三、疫情地图——省级疫情地图
1.处理数据
# 演示河南省疫情地图开发
import json
from pyecharts.charts import Map # 导入地图包
from pyecharts.options import *
# 读取文件
f = open("E:\python.learning\地图数据\疫情.txt","r",encoding="utf-8")
data = f.read()
# 关闭文件
f.close()
# 获取河南省数据
# json数据转换为python字典
data_dict = json.loads(data)
# 取到河南省数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]
# 准备数据为元组并收入list
data_list = []
for city_data in cities_data:
city_nmae = city_data["name"] + "市"
city_confirm = city_data["total"]["confirm"]
data_list.append((city_nmae,city_confirm))
# 手动添加济源市
data_list.append(("济源市",5))
2.调用函数构建地图
# 构建地图
map = Map()
map.add("河南省疫情分布",data_list,"河南")
# 设置全局选项
map.set_global_opts(
title_opts=TitleOpts(title="河南省疫情地图"),
visualmap_opts=VisualMapOpts(
is_show = True, # 是否显示
is_piecewise = True, # 是否分段
pieces=[
{"min":1,"max":99,"lable":"1~99人","color":"#CCFFFF"},
{"min": 100, "max": 999, "lable": "100~999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "10~4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000~9999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
# 绘图
map.render("河南省疫情地图.html")
整体代码
# 演示河南省疫情地图开发
import json
from pyecharts.charts import Map # 导入地图包
from pyecharts.options import *
# 读取文件
f = open("E:\python.learning\地图数据\疫情.txt","r",encoding="utf-8")
data = f.read()
# 关闭文件
f.close()
# 获取河南省数据
# json数据转换为python字典
data_dict = json.loads(data)
# 取到河南省数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]
# 准备数据为元组并收入list
data_list = []
for city_data in cities_data:
city_nmae = city_data["name"] + "市"
city_confirm = city_data["total"]["confirm"]
data_list.append((city_nmae,city_confirm))
# 手动添加济源市
data_list.append(("济源市",5))
# 构建地图
map = Map()
map.add("河南省疫情分布",data_list,"河南")
# 设置全局选项
map.set_global_opts(
title_opts=TitleOpts(title="河南省疫情地图"),
visualmap_opts=VisualMapOpts(
is_show = True, # 是否显示
is_piecewise = True, # 是否分段
pieces=[
{"min":1,"max":99,"lable":"1~99人","color":"#CCFFFF"},
{"min": 100, "max": 999, "lable": "100~999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "10~4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000~9999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
# 绘图
map.render("河南省疫情地图.html")