目录
"燃尽最后的本能,意志力会带你杀出重围"
—— 24.12.2
一、Normalization(归一化)
-
特点:将数据按比例缩放至特定区间,消除量纲差异。
-
目的:加速模型训练,提高模型收敛性,防止某些特征主导模型。
-
应用场景:数据预处理(如线性回归、神经网络、KNN 等算法)。
-
输出范围:
-
最小-最大归一化:
[0, 1]
或[-1, 1]
; -
Z-score 标准化:无固定范围,均值为
-
目录
"燃尽最后的本能,意志力会带你杀出重围"
—— 24.12.2
特点:将数据按比例缩放至特定区间,消除量纲差异。
目的:加速模型训练,提高模型收敛性,防止某些特征主导模型。
应用场景:数据预处理(如线性回归、神经网络、KNN 等算法)。
输出范围:
最小-最大归一化:[0, 1]
或 [-1, 1]
;
Z-score 标准化:无固定范围,均值为