【NLP 8、激活函数 ① sigmoid、softmax】

目录

Normalization(归一化)

1.特点

目的

应用场景

输出范围

2. Sigmoid 函数

目的

应用场景

输出范围

3. Softmax 函数

目的

应用场景

输出范围


"燃尽最后的本能,意志力会带你杀出重围"        

                                                        —— 24.12.2

一、Normalization(归一化)

  • 特点:将数据按比例缩放至特定区间,消除量纲差异。

  • 目的加速模型训练,提高模型收敛性,防止某些特征主导模型。

  • 应用场景:数据预处理(如线性回归、神经网络、KNN 等算法)。

  • 输出范围

    • 最小-最大归一化:[0, 1] 或 [-1, 1]

    • Z-score 标准化:无固定范围,均值为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值