二叉树(1)

本文详细介绍了树型结构的概念,包括节点度、不同类型(如根节点、叶节点等)、以及树的表示形式。重点讲解了二叉树的概念,特殊类型的二叉树(满二叉树和完全二叉树),以及二叉树的性质和基本操作,如前序、中序、后序遍历和层序遍历。
摘要由CSDN通过智能技术生成

目录

1. 树型结构

1.1 概念

1.2 概念

1.3 树的表示形式

​编辑 2. 二叉树

2.1 概念

2.2 两种特殊的二叉树

2.3 二叉树的性质

2.4 二叉树的存储

2.5 二叉树的基本操作

2.5.1 前置说明

2.5.2 二叉树的遍历

1. NLR:前序遍历(亦称先序遍历):

2. LNR:中序遍历

3. LRN:后序遍历

4. 层序遍历


1. 树型结构

1.1 概念

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。它具有以下的特点:
1. 有一个特殊的结点,称为根结点,根结点没有前驱结点
2. 除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1 T2 ...... Tm ,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继
3. 树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.2 概念

结点的度 :一个结点含有子树的个数称为该结点的度; 如上图: A 的度为 6
树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为 6
叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图: B C H I... 等节点为叶结点
双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A B 的父结点
孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B A 的孩子结点
根结点 :一棵树中,没有双亲结点的结点;如上图: A
结点的层次或深度 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推
树的高度 :树中结点的最大层次; 如上图:树的高度为 4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点 :度不为 0 的结点; 如上图: D E F G... 等节点为分支结点
兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B C 是兄弟结点
堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H I 互为兄弟结点
结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先
子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙
森林 :由 m m>=0 )棵互不相交的树组成的集合称为森林

1.3 树的表示形式

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如: 双亲表示法 孩子表示法 孩子双亲表示法 孩子兄弟表示法 等等。我们这里就简单的了解其中最常用的 孩子兄弟表示法
class Node {
int value ; // 树中存储的数据
Node firstChild ; // 第一个孩子引用
Node nextBrother ; // 下一个兄弟引用
}

 2. 二叉树

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由 一个根节 点加上两棵别称为 左子树 右子树 的二叉树组成。
从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2 两种特殊的二叉树

1. 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵 二叉树的层数为 K ,且结点总数是  2^K-1 ,每层的结点个数是2^(k-1), 则它就是满二叉树
2. 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n 个结点的二叉树,当且仅当其每一个结点都与深度为K 的满二叉树中编号从 0 n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的性质

1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有2^(i-1)  (i>0) 个结点
2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是2^K-1 (k>=0)
3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 n2 1
(度为0的结点永远比度为2的结点多一个)
4. 具有 n 个结点的完全二叉树的深度 k 为log2(n+1) 上取整
5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有
i>0 双亲序号: (i-1)/2 i=0 i 为根结点编号 ,无双亲结点
2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子
2i+2<n ,右孩子序号: 2i+2 ,否则无右孩子

  

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为(B )性质3
A 不存在这样的二叉树
B 200
C 198
D 199
2. 在具有 2n 个结点的完全二叉树中,叶子结点个数为(A )
A n
B n+1
C n-1
D n/2
解:有偶数个结点的完全二叉树, 度为1的结点有一个, 因为2n = n0 + n1 + n2, n0 = n2 + 1,
n1 = 1, 解得n = n0
3. 一个具有 767 个节点的完全二叉树,其叶子节点个数为(B)
A 383
B 384
C 385
D 386
解: 有奇数个结点的完全二叉树, 度为1的结点有0个, 因为767= n0 + n1 + n2, n0 = n2 + 1,
n1 = 0, 解得n0 = 384
4. 一棵完全二叉树的节点数为 531 个,那么这棵树的高度为(B )性质4
A 11
B 10
C 8
D 12

2.4 二叉树的存储

二叉树的存储结构 分为: 顺序存储 类似于链表的链式存储
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式 ,具体如下:
// 孩子表示法
class Node {
int val ; // 数据域
Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val ; // 数据域
Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent ; // 当前节点的根节点
}

2.5 二叉树的基本操作

2.5.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在我们对二叉树结构掌握还不够深入,为了降低学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
假设我们的二叉树长这样:
先用笨方法创建二叉树:
public class BinaryTree {
    public static class BTNode{
        BTNode left;
        BTNode right;
        int value;
        BTNode(int value){
            this.value = value;
        }
    }
    private BTNode root;
    public void createBinaryTree(){
        BTNode node1 = new BTNode(1);
        BTNode node2 = new BTNode(2);
        BTNode node3 = new BTNode(3);
        BTNode node4 = new BTNode(4);
        BTNode node5 = new BTNode(5);
        BTNode node6 = new BTNode(6);
        root = node1;
        node1.left = node2;
        node2.left = node3;
        node1.right = node4;
        node4.left = node5;
        node5.right = node6;
        return root;
    }

}

2.5.2 二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓 遍历 (Traversal) 是指沿着某条搜索路线,依次对树中每个结 点均做一次且仅做一次访问 访问结点所做的操作依赖于具体的应用问题 ( 比如:打印节点内容、节点内容加 1) 。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
1. NLR:前序遍历(亦称先序遍历):
访问根结点 ---> 根的左子树 ---> 根的右子树。
  // 前序遍历
    void preOrder(BTNode root) {
        if(root == null){
            return;
        }
        System.out.print(root.value + " ");
        preOrder(root.left);
        preOrder(root.right);
    }

流程图:

打印结果为:1 2 3 4 5 6

2. LNR:中序遍历
根的左子树 ---> 根节点 ---> 根的右子树。
  // 中序遍历
    void inOrder(BTNode root){
        if(root == null){
            return;
        }
        preOrder(root.left);
        System.out.print(root.value+ " ");
        preOrder(root.right);

    }
3. LRN:后序遍历
根的左子树 ---> 根的右子树 ---> 根节点。
 // 后序遍历
    void postOrder(BTNode root){
        if(root == null){
            return;
        }
        preOrder(root.left);
        preOrder(root.right);
        System.out.print(root.value + " ");

    }

结果为:

4. 层序遍历
层序遍历 :除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1 ,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第 2 层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
选择题:
1. 某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为 (A)
A: ABDHECFG B: ABCDEFGH C: HDBEAFCG D: HDEBFGCA
解: 完全二叉树按层次输出, 我们可以画图为
前序遍历为;A B D H E C F G
2. 二叉树的先序遍历和中序遍历如下:先序遍历: EFHIGJK; 中序遍历: HFIEJKG. 则二叉树根结点为 (A)
A: E B: F C: G D: H
解:画图为:
3. 设一课二叉树的中序遍历序列: badce ,后序遍历序列: bdeca ,则二叉树前序遍历序列为 (D)
A: adbce B: decab C: debac D: abcde
解:
前序遍历为:a b c d e
4. 某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出 ( 同一层从左到右 ) 的序列为 (A)
A: FEDCBA B: CBAFED C: DEFCBA D: ABCDEF

  • 19
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值