C++初学者指南-5.标准库(第二部分)--数值运算算法

C++初学者指南-5.标准库(第二部分)–数值运算算法


不熟悉 C++ 的标准库算法? ⇒ 简介

#include <numeric>
Reductions 根据输入元素的序列产生一个结果。
Scans 生成一个结果序列,其元素数量与输入序列相同。

iota (注意不是itoa函数)

在这里插入图片描述
cppreference

std::vector<int> v;
v.resize(9,0);
// fill subrange (as shown in image)
iota(begin(v)+2, begin(v)+7, 1);
for (int x : v) { cout << x << ' '; }  // 0 0 1 2 3 4 5 0 0
// fill entire vector
iota(begin(v), end(v), 3);
for (int x : v) { cout << x << ' '; }  // 3 4 5 6 7 8 9 10 11

运行示例代码
在这里插入图片描述
cppreference

std::vector<int> v;
v.resize(5,0);
// NOTE: might not be available yet
// in many standard library implementations!
auto const result = ranges::iota(v, 3);
std::cout << result.value;  // 8
for (int x : v) { cout << x << ' '; }  // 3 4 5 6 7

运行示例代码

Reductions

reduce

在这里插入图片描述
归约运算⊕必须具有结合性和可交换性,因为它的应用顺序是不确定的。
cppreference

std::vector<int> v {1,9,7,3,2,8};
auto const sum = reduce(begin(v), end(v));  // 1+9+7+3+2+8 = 30
auto const s47 = reduce(begin(v), end(v), 47);  // 47+1+9+7+3+2+8 = 77
std::vector<double> w {2.0, 1.5, 3.0, 1.5};
auto const product = reduce(begin(w), end(w), 1.0, std::multiplies<>{});  
// double product = 1.0 * 2.0 * 1.5 * 3.0 * 1.5 = 13.5
// 并行执行: #include <execution>
auto const psum = reduce(std::execution::par, begin(v), end(v));

并行执行参考
运行示例代码
确保初始值ω的类型要么和输入元素的类型相同,要么是一个能表示更多值的类型!

// 较窄的初始值类型可能会导致信息丢失:
std::vector<double> v {1.2, 2.4};                     
auto const wtf = reduce(begin(v), end(v), 1);  
cout << wtf;  // 4                    int ^
auto const sum = reduce(begin(v), end(v), 1.0);  
cout << sum;  // 4.6               double ^^^

运行示例算法

transform_reduce

在这里插入图片描述
归约操作⊕必须具有结合性和可交换性,投影函数 f 必须没有副作用、没有状态,因为它们的应用顺序没有保证。
cppreference

std::vector<int> v {3,2,4};
auto f = [](int x) { return x*x; };
auto const rf = transform_reduce(begin(v), end(v), 1, std::plus<>{}, f);  
// rf = 1 + f(3) + f(2) + f(4) = 30

运行示例代码
在这里插入图片描述
这两种运算 ⊕ 和 ⊗ 都必须是具有结合性和交换性,因为它们的应用顺序没有保证。
cppreference

std::vector<double> x {1.0, 3.0, 5.0};
std::vector<double> y {2.0, 4.0, 8.0};
auto const rx1 = transform_reduce(begin(x), end(x), begin(y), 10.0);  
// rx1 = 10 + (1⋅2)+(3⋅4)+(5⋅8) = 64
auto const rx2 = transform_reduce(
    begin(x), end(x), begin(y), 0.0, 
    std::plus<>{}, std::divides<>{});  
// rx2 = 0.0 + (1/2)+(3/4)+(5/8) = 1.875

运行示例程序

遗留操作(无法并行执行)

accumulate (≈ reduce) C++98

在这里插入图片描述
更喜欢 C++17 的 std::reduce,因为它也可以并行执行。只有在使用非交换或非结合的归约操作 ⊕ 时,才使用 accumulate。
cppreference

std::vector<int> v {1,9,7,3,2,8};
auto const sum = accumulate(begin(v), end(v), 0);  // 1+9+7+3+2+8 = 30
auto const s47 = accumulate(begin(v), end(v), 47);  // 47+1+9+7+3+2+8 = 77
std::vector<double> w {2.0, 1.5, 3.0, 1.5};
auto const product = accumulate(begin(w), end(w), 1.0, std::multiplies<>{});
// double product = 1.0 * 2.0 * 1.5 * 3.0 * 1.5 = 13.5

运行示例代码

确保初始值ω的类型与输入元素的类型相同,或者是可以表示更多值的类型!

// 较窄的初始值类型可能会导致信息丢失:
std::vector<double> v {1.2, 2.4};                     
auto const wtf = accumulate(begin(v), end(v), 0);  
cout << wtf;  // 3                  int ^
auto const sum = accumulate(begin(v), end(v), 0.0);  
cout << sum;  // 3.6             double ^^^

运行示例代码

inner_product (≈ transform_reduce) C++98

在这里插入图片描述
更喜欢使用 C++17 的 std::transform_reduce,因为它也可以并行执行。
cppreference

std::vector<int> v {4,3,2,1};
std::vector<int> w {10,20,30,40};
auto const ip = inner_product(begin(v), end(v), begin(w), 50);  
// ip = 50 + (4⋅10)+(3⋅20)+(2⋅30)+(1⋅40) = 250
std::vector<double> num {1.0, 3.0, 5.0};
std::vector<double> den {2.0, 4.0, 8.0};
auto const res = inner_product(
    begin(num), end(num), begin(den), 0.0, 
    std::plus<>{}, std::divides<>{} );  
// res = 0.0 + (1/2)+(3/4)+(5/8) = 1.875

运行示例代码

Scans (Prefix ‘Sums’)

目标范围必须能够接收所有生成的元素!
这意味着,目标容器必须适当调整大小。
标准算法无法(在大多数情况下也不可能)检查目标范围是否足够大。
试图复制超出目标容量的元素会导致未定义的行为!

adjacent_difference

在这里插入图片描述
操作 ⊖ 不应有副作用 / 不应是有状态的,因为应用的顺序是不确定的。
cpprefernece

std::vector<int> in {1,2,6,8,3,6};
// 确认输出能存放计算结果
std::vector<int> out;
out.resize(in.size());
adjacent_difference(begin(in), end(in), begin(out));
for (int x : out) { cout << x << ' '; }  // 1 1 4 2 -5 3
// C++17: 能提供定制操作
adjacent_difference(begin(in), end(in), begin(out), std::plus<>{});
for (int x : out) { cout << x << ' '; }  // 1 3 8 14 11 9
adjacent_difference(begin(in), end(in), begin(out), std::multiplies<>{});
for (int x : out) { cout << x << ' '; }  // 1 2 12 48 24 18

运行示例代码

inclusive_scan

在这里插入图片描述
二元运算⊕必须具有结合性,因为它的应用顺序是不确定的。
cppreference

std::vector<int> in {2,1,7,5,3};
// make sure output can fit results
std::vector<int> out;
out.resize(in.size());
inclusive_scan(begin(in), end(in), begin(out));
for (int x : out) { cout << x << ' '; }  // 2 3 10 15 18
inclusive_scan(begin(in), end(in), begin(out), std::minus<>{});
for (int x : out) { cout << x << ' '; }  // 2 1 -6 -11 -14
// with offset '3':
inclusive_scan(begin(in), end(in), begin(out), std::plus<>{}, 3);
for (int x : out) { cout << x << ' '; }  // 5 6 13 18 21

运行示例代码

exclusive_scan

在这里插入图片描述
二元运算⊕必须具有结合性,因为它的应用顺序是不确定的。
cppreference

std::vector<int> in {2,1,7,5,3};
// make sure output can fit results
std::vector<int> out;
out.resize(in.size());
exclusive_scan(begin(in), end(in), begin(out), 0);
for (int x : out) { cout << x << ' '; }  // 0 2 3 10 15
// with offset '3':
exclusive_scan(begin(in), end(in), begin(out), 3);
for (int x : out) { cout << x << ' '; }  // 3 5 6 13 18
exclusive_scan(begin(in), end(in), begin(out), 0, std::minus<>{});
for (int x : out) { cout << x << ' '; }  // 0 -2 -3 -10 -15

运行示例代码

transform_inclusive_scan

在这里插入图片描述
运算⊕必须具有结合性,投影函数 f 必须没有副作用、没有状态,因为它们应用的顺序无法保证。
cppreference

// returns value only if even and 0 if odd
auto even_only = [](int x) { return (x & 1) ? 0 : x; };
std::vector<int> in {2,1,6,4,3};
// make sure output can fit results
std::vector<int> out;
out.resize(in.size());
transform_inclusive_scan(
  begin(in), end(in), begin(out), std::plus<>{}, even_only);
for (int x : out) { cout << x << ' '; }  // 2 2 8 12 12
// with offset '3':
transform_inclusive_scan(
  begin(in), end(in), begin(out), std::plus<>{}, even_only, 3);
for (int x : out) { cout << x << ' '; }  // 5 5 11 15 15
// with projection f(x) = -x2:
transform_inclusive_scan(
  begin(in), end(in), begin(out), std::plus<>{}, 
  [](int x) { return -(x*x); });
for (int x : out) { cout << x << ' '; }  // -4 -5 -41 -57 -66

运行示例代码

transform_exclusive_scan

在这里插入图片描述
运算⊕必须具有结合性,投影函数 f 必须没有副作用、没有状态,因为它们应用的顺序无法保证。
cppreference

// returns value only if even and 0 if odd
auto even_only = [](int x) { return (x & 1) ? 0 : x; };
std::vector<int> in {2,1,6,4,3};
// make sure output can fit results
std::vector<int> out;
out.resize(in.size());
transform_exclusive_scan(
  begin(in), end(in), begin(out), 0, std::plus<>{}, even_only);
for (int x : out) { cout << x << ' '; }  // 0 2 2 8 12
// with offset '3':
transform_exclusive_scan(
  begin(in), end(in), begin(out), 3, std::plus<>{}, even_only);
for (int x : out) { cout << x << ' '; }  // 3 5 5 11 15
// with projection f(x) = -x2:
transform_exclusive_scan(
  begin(in), end(in), begin(out), 0, std::plus<>{}, 
  [](int x) { return -(x*x); });
for (int x : out) { cout << x << ' '; }  // 0 -4 -5 -41 -57

运行示例代码

遗留操作(无法并行执行)

partial_sum (≈ inclusive_scan) C++98

在这里插入图片描述
更喜欢C++17的std::inclusive_scan,因为它也可以并行执行。只有在归约操作⊕是非结合的情况下才使用partial_sum。
cppreference

std::vector<int> in {1,1,2,2,1,1};
// make sure output can fit results
std::vector<int> out;
out.resize(in.size());
partial_sum(begin(in), end(in), begin(out));
for (int x : out) { cout << x << ' '; }  // 1 2 4 6 7 8
partial_sum(begin(in), end(in), begin(out), std::minus<>{});
for (int x : out) { cout << x << ' '; }  // 1 0 -2 -4 -5 -6

相关内容

视频:partial_sum, iota by Conor Hoekstra
视频:accumulate, reduce by Conor Hoekstra
标准算法概述
C++标准库算法介绍
标准序列容器(vector、deque、list、…)
标准关联容器(map、set、…)
标准序列视图
cppreference:算法库
cppreference:容器库
视频:什么是 C++ 标准库?
视频:一小时内掌握 105 个 STL 算法 (Jonathan Boccara,2018)
C++ 之旅:容器和算法
算法概述表:
在这里插入图片描述
附上原文链接
如果文章对您有用,请随手点个赞,谢谢!^_^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值