DFS--

数字的全排列

#include <bits/stdc++.h>
using namespace std;

//最大的排列数目
const int N=10;
int n;
//存储排列的路径
int path[N];
//标记数字是否已经被使用
bool st[N];

void dfs(int u){
    //到达递归边界,输出一个排列
    if(u==n){
        //输出循环
        for(int i=0; i<n; i++){
            cout<<path[i];
        }
        //不写return会继续往下走
        return;
    }
    //生成排列的主循环
    //遍历每个可能的数
    for(int i=1; i<=n; i++){
        //如果当前数字i没有被使用过
        if(!st[i]){
            //选择这个数放在当前位置u
            path[u]=i;
            //标记这个数已使用
            st[i]=true;
            //递归处理下一个位置
            dfs(u+1);
            //取消标记(回溯)
            st[i]=false;
        }
    }
}

int main(){
    cin>>n;
    dfs(0);
    return 0;
}

语句的执行顺序分析
在这里插入图片描述
两点说明:
①u 的回退是由递归栈的结构自动处理的,不需要显式地进行 u-- 操作。
②等递归函数执行完后(也就是 return 了),程序才会执行st[i]=false;

n皇后问题

#include <bits/stdc++.h>

const int N=20;
// 棋盘大小(即皇后个数)
int n;
//棋盘,每个位置是 '.' 或 'Q'
char g[N][N];
//列、对角线、反对角线
bool col[N],dg[N*2],udg[N*2];
using namespace std;

void dfs(int u){
    //如果所有行都放置完毕,说明找到一个合法的方案
    if(u==n){
        for(int i=0; i<n; i++){
            for (int j = 0; j < n; j++) {
                cout << g[i][j];
            }
            cout<<endl;
        }
        cout<<endl;
        return;
    }
    
    //尝试在第u行的每一列放皇后
    for(int i=0; i<n; i++){
        // 如果该列、主对角线、副对角线均未被占用
        if(!col[i] && !dg[u+i] && !udg[n-u+i]){
            // 放置皇后
            g[u][i] = 'Q';
            // 标记当前位置为占用
            col[i] = dg[u+i] = udg[n-u+i] = true;
            dfs(u+1);
            // 恢复现场(回溯)
            col[i] = dg[u+i] = udg[n-u+i] = false;
            // 移除皇后
            g[u][i] = '.';
        }
    }
}

int main(){
    cin>>n;
    
    //初始化棋盘为空
    for(int i=0; i<n; i++){
        for(int j=0; j<n; j++){
            g[i][j]='.';
        }
        
        // 每行末尾手动加 '\0',确保是合法字符串
        g[i][n] = '\0'; 
    }
    
    dfs(0);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值