CCF CSP 认证题解合集2023.12-?(持续更新)

202312-1仓库规划

202312-2 因子化简

#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
#define maxn 100000//因为一个数的因数最大是它的开方
#define ll long long
int times, q;
ll n;
vector<int> prime;
vector<bool>isprime(maxn+1, true);
void oval() {
	int count = 0;
	prime.push_back(0);
	isprime[1] = false;
	for (int i = 2; i <=maxn; i++) {
		if (isprime[i]){
			prime.push_back(i);
			count++;
		}
		for (int j = 1; j<=count&&prime[j]<= maxn/ i; j++) {
			isprime[i * prime[j]] = false;
			if (i % prime[j] == 0) {
				break;
			}
		}
	}
}
ll query(){
	ll ans = 1;//注意ans可能就是n 会发生溢出
	for (int i = 1; i <prime.size(); i++) {
		int pow = 0;
		if (n <= 0) {
			break;
		}
		while(n % prime[i] == 0) {
			n = n / prime[i];
			pow++;
		}
		if (pow < q) {
			continue;
		}
		ans =ans*std::pow(prime[i],pow);
	}
	return ans;
}
int main() {
	cin >> times;
	oval();
	for (int i = 0; i < times; i++) {
		cin >> n >> q;
		cout<<query()<<endl;
	}
}

 202312-3 树上搜索

参考:树上搜索题解----csp202312-3-CSDN博客

#include<iostream>
#include<vector>
#define ll long long
using namespace std;
struct node {
	int value;
	int parent;
	vector<int>children;//多叉树
}a[2002],b[2002];
//b 是输入的树形 在a上可以做查询过程的删除等操作
int n, m;
ll w[2002];
//记录每个节点的后代节点权重和
ll sum(int root){
	ll ans=a[root].value;
	for (int c : a[root].children) {
		ans += sum(c);
	}
	return ans;
}
void wsub(ll total, int root) {
	w[root] = abs(total - 2 * sum(root));
	for (int c : a[root].children) {
		wsub(total, c);
	}
	return;
}
int findmin(int root){
	int min =root ;
	for (int c : a[root].children) {
		int temp = findmin(c);
		if (w[temp] < w[min]||(w[temp]==w[min])&&temp<min) {
			min = temp;
		}
	}
	return min;
}
bool intree(int q,int min) {
	if (q == min) {
		return true;
	}
	for (int c : a[min].children) {
		if (intree(q, c)) {
			return true;
		}
	}
	return false;
}
int main(){
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		cin >> b[i].value;
	}
	for (int i = 2; i <= n; i++) {
		cin >> b[i].parent;
		b[b[i].parent].children.push_back(i);
	}
	int q;
	for(int k=0;k<m;k++){//每一次查询
		int root = 1;
		cin >> q;
		for (int i = 1; i <= n; i++) {
			a[i].value = b[i].value;
			a[i].parent = b[i].parent;
			for (int j = 0; j < b[i].children.size(); j++) {
				a[i].children = b[i].children;
			}
		}
			//开始一次查询
			while (a[root].children.size()!=0) {
				//计算所有点的wsigma
				//w西格玛 = totalweight - 2 * 后代节点的权重和
				ll total=sum(root);
				wsub(total,root);
				//找到有最小wΣ的节点
				int min = findmin(root);
				//查询是否在以min为根的子树中
				cout << min << " ";
				
				if (intree(q, min)) {
					//如果在 root=min
					root = min;
				}
				else {
					//如果不在 去除以min为根的子树
					int temp = a[min].parent;
					for (int i = 0; i < a[temp].children.size(); i++) {
						if (a[temp].children[i] == min) {
							a[temp].children.erase(a[temp].children.begin() + i);
							break;
						}
					}
				}
			}
			cout << endl;
	}
	return 0;
}

关于 CCF CSP 认证第35次考试的 Python 题目解答或解析,目前并未提供具体的引用材料来支持这一请求。然而,可以基于以往的经验和类似的题目类型给出一般性的指导。 ### 关于CCF CSP认证 CCF CSP(软件能力认证)是一项评估个人编程能力和解决问题能力的测试[^2]。该认证通常包含多道编程题,考察的内容涵盖了基本的数据结构、算法设计以及程序实现的能力。 ### 如何准备CSP认证? 对于参加此类认证考试的学生或者开发者来说,熟悉常见的算法模式是非常重要的。比如: - 掌握数组操作的基础方法。 - 学习并熟练运用诸如栈、队列这样的基础数据结构。 - 对字符串处理有深入的理解,能够快速编写正则表达式匹配逻辑。 以下是针对可能出现在CSP中的典型问题的一个通用解决方案框架: #### 示例:矩阵转置 假设有一道类似于矩阵重塑的问题,这里展示如何通过Python实现矩阵转置的功能作为例子: ```python def transpose(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 transposed = [[matrix[row][col] for row in range(rows)] for col in range(cols)] return transposed # 测试代码 input_matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] result = transpose(input_matrix) for r in result: print(r) ``` 上述代码实现了简单的二维列表(即矩阵)转置功能[^3]。 ### 提升答题技巧 为了更好地应对像CSP这样严格的评测环境,在日常练习中应该注重以下几个方面: - **时间复杂度优化**:确保所写的函数尽可能高效运行。 - **边界条件考虑全面**:注意输入为空或其他极端情况下的行为定义。 - **可读性强**:即使追求效率也不能牺牲代码清晰性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值