牛吃草问题

文章通过两个实例分析了评测机处理编程竞赛任务的情况,利用方程组和增长率计算得出,在10分钟内完成评测需要9台评测机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:洛谷的评测任务是单位时间内均匀增加的。8台评测机 30分钟可以刚好把评测队列中的程序评测完毕,10 台评测机 6 分钟可以刚好把评测队列中的程序评测完毕,请问几台评测机可以在 10 分钟时刚好把评测队列中的程序评测完毕?

 思路一:列方程组

假设测评机每分钟能处理和增长的测评数都是一个单位,测评任务每分钟增长y,基础测评任务为x,则对于第一个例子:

      x+30y = 8 * 30;

对于第二个例子有:

      x+6y = 10 * 6;

可列方程组:

{x+30y = 8 * 30;   => y=7.5

{x+6y = 10 * 6;     => x=15

 思路二:

1.先由两个例子算出增长速率:

   8台测评机30分钟测评的数目是:30*8=240

   10台测评机6分钟测评的数目是:10*6 = 60

  二者差了24分钟,差了180测评数,则每分钟的增长速率为v = 180/24 = 7.5

2.算出基础测评数(两个例子任选其一即可,以下以第一个例子为例):最后的测评数-增长的测评数 = 基础测评数。240-30*7.5=15。

3.计算x台评测机可以在 10 分钟时刚好把评测队列中的程序评测完毕:

 15+10*7.5=10*x   => x=9

思路三:本题有个巧法:

已知:

 8台评测机30分钟

10 台评测机6 分钟

求:

x台评测机10 分钟(x的时间卡在30min和6min之间,则作为一个整数的x一定卡在8和10之间,也就是9啦)

牛吃草问题是一种经典的数学建模题,在计算科学领域,尤其是算法设计和数据结构学习过程中也经常会被提到。下面我们就基于C++语言的特点来讲解如何解决这类问题。 ### 牛吃草问题简介 假设有一片草地,其上不断生长着青草;同时有若干头牛持续地在这块地上进食。已知每头牛每天消耗一定量的草,并且这片草地每天新增长固定数量的新鲜牧草。我们需要确定的是如果给定初始草存量、每日增草量以及每头牛日均食草量等条件后,需要多少天才能将所有现存及新生之草完全吃完等问题的答案。 此类题目通常会包含以下几个要素: - 初始时的总草量 \(M\) - 每单位时间内的自然增长草量 \(r\) (可以为负值表示减少) - 单位时间内一头牛能吃的草的数量 \(e\) - 当前共有几只牛参与进食活动 #### 使用C++解决问题的基本步骤: 1. **输入处理**:首先读入相关的参数包括但不限于上述四种基本因素。 2. **计算核心公式推导** - 若仅考虑静态情况即忽略掉后续产生的新草,则所需时间为\(T = \lceil M / n * e\rceil\) 其中n代表当前存在的牛数; - 而动态情形下综合考量了原有存量加上期间生成部分后的总体积变化率应等于全体牲畜总的消费速率才会停止进化过程达到平衡点故而得到方程组形式求解未知变量如最终稳定状态下的群体规模或是耗尽全部资源所需的时刻长度等等信息内容。 ```cpp #include <iostream> using namespace std; int main(){ double m,r,e,n; cout << "请输入原始草量m:" ; cin >> m; cout << "请输入每天增加草量r(如果是减少则填入负数):" ; cin >> r ; cout << "请输入每头牛一天吃草量e:" ; cin >> e ; cout << "请输入现有牛的数量n:" ; cin >> n ; if(r >=0 && e*n <=r){ //永远不会吃完的情况 cout<<"由于草的增长速度大于等于牛群食用的速度,所以永远不可能把所有的草都吃完."<<endl; }else{ int days =(int)(m/(double)(n*e-r)); if(m%(n*e-r)!=0)days+=1;//向上取整操作 cout << "预计将在第"<<days <<"天结束之前或当天恰好把草场的所有草吃完."<< endl; } return 0;} ``` 通过以上程序段落展示了简单的实现思路其中需要注意边界条件例如当草原不存在额外再生能力也就是\(r<=0\)并且实际需求超出供给限制时候应当特别判断避免出现错误结果输出。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值