题目:洛谷的评测任务是单位时间内均匀增加的。8台评测机 30分钟可以刚好把评测队列中的程序评测完毕,10 台评测机 6 分钟可以刚好把评测队列中的程序评测完毕,请问几台评测机可以在 10 分钟时刚好把评测队列中的程序评测完毕?
思路一:列方程组
假设测评机每分钟能处理和增长的测评数都是一个单位,测评任务每分钟增长y,基础测评任务为x,则对于第一个例子:
x+30y = 8 * 30;
对于第二个例子有:
x+6y = 10 * 6;
可列方程组:
{x+30y = 8 * 30; => y=7.5
{x+6y = 10 * 6; => x=15
思路二:
1.先由两个例子算出增长速率:
8台测评机30分钟测评的数目是:30*8=240
10台测评机6分钟测评的数目是:10*6 = 60
二者差了24分钟,差了180测评数,则每分钟的增长速率为v = 180/24 = 7.5
2.算出基础测评数(两个例子任选其一即可,以下以第一个例子为例):最后的测评数-增长的测评数 = 基础测评数。240-30*7.5=15。
3.计算x台评测机可以在 10 分钟时刚好把评测队列中的程序评测完毕:
15+10*7.5=10*x => x=9
思路三:本题有个巧法:
已知:
8台评测机30分钟
10 台评测机6 分钟
求:
x台评测机10 分钟(x的时间卡在30min和6min之间,则作为一个整数的x一定卡在8和10之间,也就是9啦)