牛吃草问题

文章通过两个实例分析了评测机处理编程竞赛任务的情况,利用方程组和增长率计算得出,在10分钟内完成评测需要9台评测机。
摘要由CSDN通过智能技术生成

题目:洛谷的评测任务是单位时间内均匀增加的。8台评测机 30分钟可以刚好把评测队列中的程序评测完毕,10 台评测机 6 分钟可以刚好把评测队列中的程序评测完毕,请问几台评测机可以在 10 分钟时刚好把评测队列中的程序评测完毕?

 思路一:列方程组

假设测评机每分钟能处理和增长的测评数都是一个单位,测评任务每分钟增长y,基础测评任务为x,则对于第一个例子:

      x+30y = 8 * 30;

对于第二个例子有:

      x+6y = 10 * 6;

可列方程组:

{x+30y = 8 * 30;   => y=7.5

{x+6y = 10 * 6;     => x=15

 思路二:

1.先由两个例子算出增长速率:

   8台测评机30分钟测评的数目是:30*8=240

   10台测评机6分钟测评的数目是:10*6 = 60

  二者差了24分钟,差了180测评数,则每分钟的增长速率为v = 180/24 = 7.5

2.算出基础测评数(两个例子任选其一即可,以下以第一个例子为例):最后的测评数-增长的测评数 = 基础测评数。240-30*7.5=15。

3.计算x台评测机可以在 10 分钟时刚好把评测队列中的程序评测完毕:

 15+10*7.5=10*x   => x=9

思路三:本题有个巧法:

已知:

 8台评测机30分钟

10 台评测机6 分钟

求:

x台评测机10 分钟(x的时间卡在30min和6min之间,则作为一个整数的x一定卡在8和10之间,也就是9啦)

### 回答1: 小学奥数中的“牛吃草问题”可以通过编写一个简单的 Python 程序来解决。 假设有 $n$ 头牛和 $m$ 块草,每头牛每天需要吃一块草,且草只能被一头牛吃一次。现在请你计算出,在 $p$ 天内,最多有多少头牛可以吃饱。 我们可以通过贪心算法来解决这个问题。我们可以让每头牛都尽可能多地吃草,也就是让每头牛都吃它前面的草,直到它吃不饱或者没有草为止。 下面是一个简单的 Python 代码实现: ```python n = int(input("请输入牛的数量:")) m = int(input("请输入草的数量:")) p = int(input("请输入天数:")) # 计算每头牛能吃多少草 per_cow = m // n # 判断每头牛是否能吃饱 if per_cow >= p: print(n) else: # 计算剩余的草 left_grass = m - n * per_cow # 计算能吃饱的牛的数量 full_cow = left_grass // p + per_cow print(full_cow) ``` 我们首先输入牛的数量、草的数量和天数,然后计算每头牛能吃多少草。如果每头牛都能在 $p$ 天内吃饱,那么输出 $n$;否则,我们计算剩余的草,然后计算能吃饱的牛的数量并输出。 ### 回答2: 小学奥数中的牛吃草问题可以使用Python来解决。首先,我们需要理解问题的要求:有一只牛每天要吃掉固定数量的草,如果剩下的草不够一天吃的量,就会吃光所有剩下的草。现在给定牛一共的天数和每天要吃的草的数量,我们需要计算出牛吃完草之后每天剩下的草的数量。 我们可以使用循环来模拟给牛吃草的过程。首先,我们需要输入牛的总天数和每天要吃的草的数量: ```python total_days = int(input("请输入牛的总天数:")) grass_per_day = int(input("请输入每天要吃的草的数量:")) ``` 接下来,我们可以使用一个循环来计算牛吃完草后每天剩下的草的数量。首先,我们需要初始化剩下的草的数量为总草量,然后每天减去牛吃的草的数量,直到剩下的草的数量小于每天要吃的草的数量。循环结束之后,剩下的草的数量就是最后一天吃完草后每天的剩余量。 ```python remaining_grass = total_days while remaining_grass >= grass_per_day: remaining_grass -= grass_per_day ``` 最后,我们可以输出每天剩下的草的数量: ```python print("每天剩下的草的数量:", remaining_grass) ``` 这样,就可以用Python解决小学奥数的牛吃草问题了。通过使用循环,我们可以计算出牛吃完草后每天剩下的剩余量。这个方法可以帮助学生更好地理解问题,并且可以应用于解决其他类似的问题。 ### 回答3: Python可以很方便地解决小学奥数中的牛吃草问题。首先,我们可以定义一个函数来表示牛吃草的过程。函数接受两个参数:n表示牛的数量,m表示草的数量。然后,我们可以使用循环来模拟牛吃草的过程。 首先,我们可以创建一个数组来表示每个牛的饥饿程度,初始值都为0。然后,我们可以使用一个循环来模拟牛吃草的过程。在每一次循环中,我们将从数组中找出饥饿程度最低的牛,让它吃一颗草,并更新它的饥饿程度。然后,我们将继续下一轮循环,直到所有的草都被吃完为止。 具体的代码如下所示: ```python def solve(n, m): hungry = [0] * n # 创建一个长度为n的数组,初始值都为0 for i in range(m): min_hungry = min(hungry) # 找出当前饥饿程度最低的牛 min_index = hungry.index(min_hungry) # 找出最低饥饿程度牛的索引 hungry[min_index] += 1 # 让最低饥饿程度的牛吃一颗草,并更新它的饥饿程度 return max(hungry) # 返回最终最饥饿的牛的饥饿程度 # 调用函数并打印结果 n = 5 # 牛的数量 m = 10 # 草的数量 result = solve(n, m) print("最饥饿的牛的饥饿程度为:", result) ``` 这段代码中,我们首先定义了solve函数,函数接受两个参数n和m。然后,我们创建了一个长度为n的数组hungry,用于表示每个牛的饥饿程度,初始值都为0。在循环中,我们找出当前饥饿程度最低的牛,让它吃一颗草,并更新它的饥饿程度。最后,我们通过返回数组中的最大值,来表示最饥饿的牛的饥饿程度。 以上是Python解决小学奥数牛吃草问题的简单示例。当然,根据具体题目的要求和限制,可能还需要进一步的调整和优化代码。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值