C++高精度乘法

本文介绍了C++如何进行高精度乘法运算,详细讲解了高精度乘法的原理,核心思路和代码实现,包括如何处理进位和存储结果,并提供了完整的代码示例及测试样例。
摘要由CSDN通过智能技术生成

1.C++为什么需要高精度计算?

对于 C++ 而言,最大的数据为 long long(64b,8位),对于超过 8B 的数据,C++ 没有对应的数据类型进行表示。

C++数据类型表如下所示:

 2.高精度乘法原理

1.利用竖式乘法原理

                a[3]      a[2]       a[1]       a[0]

                   1          2           3          5

                                          b[1]       b[0]

                    *                       8          7

  ————————————————————

                  c[3]      c[2]       c[1]       c[0]

                    8         6           4           5

         c[4]    c[3]     c[2]       c[1]

           9       8         8           0

  ———————————————————— 

c[5]   c[4]    c[3]     c[2]        c[1]        c[0]

  1       0         7        4           4            5

C++ 高精度乘法可以使用 vector 容器来实现。具体步骤如下: 1. 定义两个 vector 容器存储两个高精度数,例如 vector<int> a 和 vector<int> b。 2. 定义一个 vector 容器存储结果,例如 vector<int> c,初始时将其填充为 0。 3. 从两个高精度数的最低位开始,按照竖式乘法的规则逐位相乘,将结果存储在 c 中相应的位置。 4. 处理进位,将 c 中每一位上的数字对 10 取模并记录进位,将进位值加到下一位的计算结果中。 5. 删除 c 中前导 0。 6. 将 c 中每一位上的数字转换为字符并拼接成字符串,即为高精度乘法的结果。 以下是基于 vector 实现的 C++ 高精度乘法示例代码: ```c++ #include <iostream> #include <vector> using namespace std; vector<int> multiply(vector<int> a, vector<int> b) { vector<int> c(a.size() + b.size(), 0); // 存储结果,初始值为 0 for (int i = 0; i < a.size(); i++) { int carry = 0; // 进位值 for (int j = 0; j < b.size(); j++) { int tmp = a[i] * b[j] + c[i + j] + carry; // 乘法计算 c[i + j] = tmp % 10; // 取模 carry = tmp / 10; // 进位 } if (carry) c[i + b.size()] += carry; // 处理最高位的进位 } while (c.size() > 1 && c.back() == 0) c.pop_back(); // 删除前导 0 return c; } int main() { string num1, num2; cin >> num1 >> num2; vector<int> a, b; for (int i = num1.size() - 1; i >= 0; i--) a.push_back(num1[i] - '0'); for (int i = num2.size() - 1; i >= 0; i--) b.push_back(num2[i] - '0'); vector<int> c = multiply(a, b); for (int i = c.size() - 1; i >= 0; i--) cout << c[i]; cout << endl; return 0; } ``` 该代码中,输入的两个高精度数 num1 和 num2 都是字符串类型,需要将其转换为 vector 容器进行计算。输出结果时,需要将计算结果的 vector 容器中的数字逆序输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值