地图上有 N 个目标,用整数 Xi,Yi 表示目标在地图上的位置,每个目标都有一个价值 Wi。
注意:不同目标可能在同一位置。
现在有一种新型的激光炸弹,可以摧毁一个包含 R×R 个位置的正方形内的所有目标。
激光炸弹的投放是通过卫星定位的,但其有一个缺点,就是其爆炸范围,即那个正方形的边必须和 x,y 轴平行。
求一颗炸弹最多能炸掉地图上总价值为多少的目标。
输入格式
第一行输入正整数 N 和 R,分别代表地图上的目标数目和正方形包含的横纵位置数量,数据用空格隔开。
接下来 N 行,每行输入一组数据,每组数据包括三个整数 Xi,Yi,Wi,分别代表目标的 x 坐标,y 坐标和价值,数据用空格隔开。
输出格式
输出一个正整数,代表一颗炸弹最多能炸掉地图上目标的总价值数目。
数据范围
0≤R≤109
0<N≤10000,
0≤Xi,Yi≤5000
0≤Wi≤1000
输入样例:
2 1
0 0 1
1 1 1
输出样例:
1
题目分析:如下图,每个目标是一个方格点,由题意知在炸弹范围边缘的不算,因此只能最多炸到R×R的范围的点
因此我们可以运用前缀和的思想,把所有的炸弹范围枚举一遍,找到总价值最高的价值数,由于是前缀和,我们枚举要从右下角开始枚举
代码实现:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=5010;
int n,m;//表示整个大矩形得长和宽
int st[N][N];//开一个前缀和数组
int main()
{
int cnt,R;
cin>>cnt>>R;
R=min(5001,R);
n=R,m=R;
while(cnt--)
{
int x,y,w;
cin>>x>>y>>w;
x++,y++;//相当于把数组由(0,0)开始变成从(1,1)开始,这样可以不用考虑边界问题
n=max(n,x),m=max(m,y);//n和m应该取一个输入x,y的最大值,如果炸弹范围R更大,则取R
st[x][y]+=w;//因为同一个位置可能会有很多目标,因此用+=
}
//预处理前缀和
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
st[i][j]+=st[i-1][j]+st[i][j-1]-st[i-1][j-1];
}
}
//从每个(i,j)开始枚举,找到最大值
int res=0;
for(int i=R;i<=n;i++)
for(int j=R;j<=m;j++)
{
res=max(res,st[i][j]-st[i-R][j]-st[i][j-R]+st[i-R][j-R]);
}
cout<<res<<endl;
return 0;
}
这里把这题运用前缀和的公式也放出来,(i,j)是右下角的点,(i-R+1,j-R+1)是左上角的点,把这两个点带入前缀和公式中即可