程序猿圈子里正在流行一种很新的简写方法:
对于一个字符串,只保留首尾字符,将首尾字符之间的所有字符用这部分的长度代替。
例如 internationalization
简写成 i18n
,Kubernetes
简写成 K8s
,Lanqiao
简写成 L5o
等。
在本题中,我们规定长度大于等于 K 的字符串都可以采用这种简写方法(长度小于 K 的字符串不配使用这种简写)。
给定一个字符串 S和两个字符 c1 和 c2,请你计算 S 有多少个以 c1 开头 c2 结尾的子串可以采用这种简写?
输入格式
第一行包含一个整数 K。
第二行包含一个字符串 S 和两个字符 c1 和 c2。
输出格式
一个整数代表答案。
数据范围
对于 20% 的数据,2≤K≤|S|≤10000。
对于 100% 的数据,2≤K≤|S|≤5×105。S 只包含小写字母。c1 和 c2 都是小写字母。
|S|代表字符串 S 的长度。
输入样例:
4
abababdb a b
输出样例:
6
样例解释
符合条件的子串如下所示,中括号内是该子串
[abab]abdb
[ababab]db
[abababdb]
ab[abab]db
ab[ababdb]
abab[abdb]
现在把去年蓝桥杯的题再拿出来看看复盘一下,准备第十五届的蓝桥杯,去年蓝桥杯难度是有点提升的,但我们应该争取把该拿的简单题分拿到,这题只要想的到二分去优化就能过,暴力也能拿一点分。
这题解法很多,这里我给出我当时想到的最简单的方法,最好理解的就是把原字符串的需要的c1和c2全部找出来把他们的下标分别存到两个数组t和p,再把 两个数组之间的元素相减>=k 的所有组数找出来即是该题的答案,图解
这里给出代码:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;//开long long因为sum可能很大
const int N=500010;
int k;
ll sum=0;//sum为最终加起来的结果
string a;
int t[N],p[N];//开两个数组分别存需要的c1和c2的下标
char b,c;
int main()
{
memset(t,5e5,sizeof(t));//这里为了防止后面p数组减到t数组的非题意的0,全开到最大保险
cin>>k;
cin>>a>>b>>c;
int z=1,x=1;
for(int i=0;i<a.size();i++){
if(a[i]==b) t[z++]=i;
if(a[i]==c) p[x++]=i;
}//这里把原字符串的c1和c2找出来把下标分别存进去,记住这里是下标从0开始往
//上存的,因此存进去的t数组和p数组都是从小到大排好序的
for(int i=x-1;i>0;i--)
{
//二分模板
int l=0,r=z;
while(l<r)
{
int mid=l+r+1>>1;
if(p[i]-t[mid]+1>=k) l=mid;
else r=mid-1;
}
sum+=l;
}
cout<<sum<<endl;
return 0;
}