LeetCode-链表-环形链表+环形链表II

image-20250520203051704

LeetCode-链表-环形链表+环形链表II

✏️ 关于专栏:专栏用于记录 prepare for the coding test


📝 环形链表

🎯题目描述

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false

🔗题目链接:环形链表

🔍 输入输出示例

示例 1:

img
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

img
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

img
输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

🧩题目提示

  • 链表中节点的数目范围是 [0, 104]
  • -105 <= Node.val <= 105
  • pos-1 或者链表中的一个 有效索引

🧪AC

使用快慢指针思想,相遇即证明链表有环。

image-20250521131309240

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    bool hasCycle(ListNode *head) {
        ListNode* fast = head;
        ListNode* slow = head;
        while(fast&&fast->next){
            fast = fast->next->next;
            slow = slow->next;
            if(fast == slow){
                return true;
            }
        }
        return false;
    }
};

📝 环形链表||

🎯题目描述

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos-1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

🔗题目链接:环形链表||

🔍 输入输出示例

示例 1:

img
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

img
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

img
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

🧩题目提示

  • 链表中节点的数目范围在范围 [0, 104]
  • -105 <= Node.val <= 105
  • pos 的值为 -1 或者链表中的一个有效索引

🧪AC

image-20250521134741879

假设从链表头节点到环的入口节点,需要走 a 步;环的长度为 c

当快慢指针首次相遇时,设慢指针一共走了 b 步,由于快指针的速度是慢指针的两倍,因此快指针此时走了 2b 步。

又因为快指针比慢指针多走了若干圈(设为 k 圈),即比慢指针多走了 k * c 步,便有:

2b - b = k * c  →  b = k * c

此时慢指针已经在环中走了 b 步,即绕了 k 圈,当前位置是相遇点。

从相遇点开始,慢指针再继续走 a 步,刚好可以回到环的入口节点(因为相遇点与入口之间刚好差 kc - a 步,走 a 步正好抵消这个差值)。

所以如果此时从头节点再派出一个指针,和慢指针一起每次走一步,那么两个指针最终一定会在环的入口节点相遇。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode* fast = head;
        ListNode* slow = head;
        while(fast&&fast->next){
            fast = fast->next->next;
            slow = slow->next;
            if(fast == slow){
                while(slow != head){
                    slow = slow->next;
                    head = head->next;
                }
                return slow;
            }
        }
        return nullptr;
    }
};

🌟 总结

双指针(快慢指针)思想是关键

  • 快指针每次走两步,慢指针每次走一步。
  • 如果存在环,快慢指针最终一定会在环中相遇;如果无环,快指针会先走到链表尾部(即 nullptr)。

检测是否有环(环形链表 I)

  • 相遇即表示链表中有环,时间复杂度 O(n),空间复杂度 O(1)。

找到入环节点(环形链表 II)

  • 第一次相遇后,将其中一个指针移动到头节点,然后两个指针同时每次走一步,再次相遇的位置就是入环点。
    指针每次走一步。
  • 如果存在环,快慢指针最终一定会在环中相遇;如果无环,快指针会先走到链表尾部(即 nullptr)。

检测是否有环(环形链表 I)

  • 相遇即表示链表中有环,时间复杂度 O(n),空间复杂度 O(1)。

找到入环节点(环形链表 II)

  • 第一次相遇后,将其中一个指针移动到头节点,然后两个指针同时每次走一步,再次相遇的位置就是入环点。
  • 数学原理保证这个过程是正确的,具体可参考“相遇点推理法”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值