有 NN 个瓶子,编号 1∼N1∼N,放在架子上。
比如有 55 个瓶子:
2 1 3 5 4
要求每次拿起 22 个瓶子,交换它们的位置。
经过若干次后,使得瓶子的序号为:
1 2 3 4 5
对于这么简单的情况,显然,至少需要交换 22 次就可以复位。
如果瓶子更多呢?你可以通过编程来解决。
输入格式
第一行包含一个整数 NN,表示瓶子数量。
第二行包含 NN 个整数,表示瓶子目前的排列状况。
输出格式
输出一个正整数,表示至少交换多少次,才能完成排序。
数据范围
1≤N≤100001≤N≤10000,
输入样例1:
5
3 1 2 5 4
输出样例1:
3
输入样例2:
5
5 4 3 2 1
输出样例2:
2
暴力
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e4+10;
int a[N];
ll ans=0;
int main()
{
int n;cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++)
{
int t=i;
if(t!=a[i])
{
for(int j=1;j<=n;j++)
{
if(t==j) continue;
if(t==a[j])
{
swap(a[j],a[t]);
ans++;
}
}
}
}
cout<<ans<<endl;
return 0;
}
置换群
// 交换瓶子
// k个环--> n个环
/*
情况:
1. 一个环中的两个节点交换--> 分裂成两个
2. 两个环中的两个节点交换--> 合成一个环
k个环--> n个环 (自环)
最少需要 n-k(只进行情况1)个操作, 所以答案就是n-k
*/
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e4+10;
bool st[N];
int a[N];
int main()
{
int n;cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
ll ans=0;//环的数量
for(int i=1;i<=n;i++)
{
if(!st[i])//如果没有被标记过,就说明这个点在一个新的环中
{
ans++;//环++
for(int j=i;!st[j];j=a[j])
{
st[j]=true;//走完这个环 每次变更指向a[j] 即瓶子初始序号的第j个
// 1 2 3 4 5
// 3 1 2 5 4
// 3指向2 j=a[3]=2
// 2指向1 j=a[2]=1
// 1指向3 j=a[1]=3;
// 3指向2 j=a[3]=2 -->被标记过了
// st[2] st[3]
// st[4] st[4]=true 4指向5 j=a[4]=5
// st[5]=true 5指向4 j=a[5]=4;
// 一共两个环
}
}
}
cout<<n-ans<<endl;
return 0;
}