题目描述
mobiusp 创作了一首 n 个音符的乐曲,其中第 iii 个音符的音高为 ai ,但是 mobiusp 对以前的创作风格和黑历史很不满意,他希望所有音符的音高 ai 都是 1∼7 的正整数,且相邻的音高差不超过 k 。
现在他要修改若干个音符的音高,使得最终乐曲能让他满意。形式化地说,即使得对于任意 i∈[1,n]i,有 1≤ai≤7 ,且对于任意 i∈[1,n−1]i 均有 ∣ai−a(i+1)∣≤k。
请你求出,他至少需要修改几个音符,才能满足这个要求。
输入描述:
第一行两个整数 n,k (1≤n≤105,0≤k≤6)意义见题目描述。 第二行 n 个正整数,其中第 i 个正整数 ai (1≤ai≤7)表示第 i 个音符的音高。
输出描述:
一行一个整数,表示至少需要修改几个音符。
示例1
输入
5 2
1 7 7 1 3
输出
2
说明
将两个 7 更改为 1 ,最小更改数为 2 ,可以证明没有更小的满足条件的更改数。
输入
10 3 2 5 6 4 4 5 7 3 5 6
输出
1
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int a[N];
int f[N][10];//第i个音符中,音高为j的最小修改次数
int main()
{
int n,k;cin>>n>>k;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++)
{
//第i个音符中可能出现的音高
for(int j=1;j<=7;j++)
{
int mn=1e6+10;
int min1=max(j-k,1);//最小范围
int max1=min(j+k,7);//最大范围
for(int r=min1;r<=max1;r++)
{
mn=min(mn,f[i-1][r]);//选最小
}
//看是否需要修改
if(j==a[i]) f[i][j]=mn;
else f[i][j]=mn+1;
}
}
int mn=1e6+10;
//找出第n个音符中,音高为j 的最小修改次数
for(int i=1;i<=7;i++)
{
mn=min(f[n][i],mn);
}
cout<<mn<<endl;
return 0;
}