单调栈
单调递增栈:在保持栈内元素单调递增的前提下(如果栈顶元素大于要入栈的元素,将将其弹出),将新元素入栈。
单调递减栈:在保持栈内元素单调递减的前提下(如果栈顶元素小于要入栈的元素,则将其弹出),将新元素入栈。
单调栈的时间复杂度是O(n)
单调栈
给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。
输入格式
第一行包含整数 N,表示数列长度。
第二行包含 N 个整数,表示整数数列。
输出格式
共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。
数据范围
1≤N≤10^5
1≤数列中元素≤10^9
输入样例:
5
3 4 2 7 5
输出样例:
-1 3 -1 2 2
#include<iostream>
#include<stack>
using namespace std;
stack<int>sta;
const int N=1e5+10;
int a[N],b[N];
int main()
{
int n;cin>>n;
for(int i=0;i<n;i++) cin>>a[i];
for(int i=0;i<n;i++)
{
while(sta.size()&&sta.top()>=a[i]) sta.pop();
if(sta.size()) b[i]=sta.top();
else b[i]=-1;
sta.push(a[i]);
}
for(int i=0;i<n;i++) cout<<b[i]<<" ";
return 0;
}
接雨水
//单调栈--寻找右边第一个比它大的数--单调递减栈
class Solution {
public:
int trap(vector<int>& height) {
stack<int>sta;
int sum=0;
for(int i=0;i<height.size();i++)
{
while(sta.size()&&height[sta.top()]<height[i])
{
//相邻两个柱子是无法存水的 必须间隔一个 往前找一个 去找宽和高加入
int pre=sta.top();
sta.pop();
if(sta.size()==0) break;
int l=sta.top();
int H=min(height[l],height[i])-height[pre];
sum+=(i-l-1)*H;
}
sta.push(i);
}
return sum;
}
};
单调队列
滑动窗口
给定一个大小为 n≤10^6 的数组。
有一个大小为 k的滑动窗口,它从数组的最左边移动到最右边。
你只能在窗口中看到 k 个数字。
每次滑动窗口向右移动一个位置。
以下是一个例子:
该数组为 [1 3 -1 -3 5 3 6 7]
,k 为 33。
窗口位置 | 最小值 | 最大值 |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。
输入格式
输入包含两行。
第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。
第二行有 n 个整数,代表数组的具体数值。
同行数据之间用空格隔开。
输出格式
输出包含两个。
第一行输出,从左至右,每个位置滑动窗口中的最小值。
第二行输出,从左至右,每个位置滑动窗口中的最大值。
输入样例:
8 3
1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3
3 3 5 5 6 7
#include<iostream>
#include<algorithm>
#include<deque>
using namespace std;
const int N=1e6+10;
deque<int>q;
int a[N];
int main()
{
int n,k;scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
//每个位置滑动窗口中的最小值--单调递增队列
for(int i=1;i<=n;i++)
{
//新进入窗口的值小于队尾元素,则队尾出队列
while(q.size()&&a[i]<q.back()) q.pop_back();
q.push_back(a[i]);//将新进入的元素入队
if(i-k>0&&q.front()==a[i-k]) q.pop_front();//若队头是否滑出了窗口,队头出队
if(i>=k) cout<<q.front()<<" ";//当窗口形成,输出队头对应的值
}
cout<<endl;
q.clear();
//每个位置滑动窗口中的最大值--单调递减队列
for(int i=1;i<=n;i++)
{
while(q.size()&&a[i]>q.back()) q.pop_back();
q.push_back(a[i]);
if(i-k>0&&q.front()==a[i-k]) q.pop_front();
if(i>=k) cout<<q.front()<<" ";
}
return 0;
}
E. Rudolf and k Bridges(DP+单调队列)
Example
input
5
3 11 1 4
0 1 2 3 4 5 4 3 2 1 0
0 1 2 3 2 1 2 3 3 2 0
0 1 2 3 5 5 5 5 5 2 0
4 4 2 1
0 3 3 0
0 2 1 0
0 1 2 0
0 3 3 0
4 5 2 5
0 1 1 1 0
0 2 2 2 0
0 2 1 1 0
0 3 2 1 0
1 8 1 1
0 10 4 8 4 4 2 0
4 5 3 2
0 8 4 4 0
0 3 4 8 0
0 8 1 10 0
0 10 1 5 0
output
4 8 4 15 14
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<deque>
#include<set>
using namespace std;
typedef long long ll;
const int N=110,M=2e5;
ll a[M];
ll f[M];
int main()
{
int t;cin>>t;
while(t--)
{
int n,m,k,d;cin>>n>>m>>k>>d;
vector<ll>v;
//采用dp+单调队列
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++) cin>>a[j];
memset(f,0,sizeof f);
f[1]=1;
deque<ll>q;
q.push_back(1);
for(int j=2;j<=m;j++)
{
//若长度大于d 将对头弹出
while(q.size()&&j-q.front()-1>d) q.pop_front();
//此时f[j]的最小值
f[j]=f[q.front()]+a[j]+1;
//单调递增队列
while(q.size()&&f[j]<=f[q.back()]) q.pop_back();
//推入队列中
q.push_back(j);
}
q.clear();
v.push_back(f[m]);
}
ll min1=1e18;
for(int i=0;i+k<=v.size();i++)
{
ll num=0;
for(int j=i;j<i+k;j++)
{
num+=v[j];
}
min1=min(min1,num);
}
cout<<min1<<endl;
}
return 0;
}