单调栈+单调队列

文章介绍了如何使用单调栈和单调队列解决特定问题,如找出数列中每个数左边第一个比它小的数,以及在滑动窗口中找到最大值和最小值。通过示例代码展示了这些数据结构的应用和时间复杂度分析。
摘要由CSDN通过智能技术生成

  单调栈​

单调递增栈:在保持栈内元素单调递增的前提下(如果栈顶元素大于要入栈的元素,将将其弹出),将新元素入栈。

单调递减栈:在保持栈内元素单调递减的前提下(如果栈顶元素小于要入栈的元素,则将其弹出),将新元素入栈。

单调栈的时间复杂度是O(n)

 单调栈

给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。

输入格式

第一行包含整数 N,表示数列长度。

第二行包含 N 个整数,表示整数数列。

输出格式

共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。

数据范围

1≤N≤10^5
1≤数列中元素≤10^9

输入样例:

5
3 4 2 7 5
输出样例:

-1 3 -1 2 2

#include<iostream>
#include<stack>
using namespace std;
stack<int>sta;
const int N=1e5+10;
int a[N],b[N];
int main()
{
    int n;cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    for(int i=0;i<n;i++)
    {
        while(sta.size()&&sta.top()>=a[i]) sta.pop();
        if(sta.size()) b[i]=sta.top();
        else b[i]=-1;
        sta.push(a[i]);
    }
    for(int i=0;i<n;i++) cout<<b[i]<<" ";
    return 0;
}

接雨水 

接雨水

//单调栈--寻找右边第一个比它大的数--单调递减栈
class Solution {
public:
    int trap(vector<int>& height) {
         stack<int>sta;
         int sum=0;
         for(int i=0;i<height.size();i++)
         {
            while(sta.size()&&height[sta.top()]<height[i])
            {
                //相邻两个柱子是无法存水的 必须间隔一个 往前找一个 去找宽和高加入
                int pre=sta.top();
                sta.pop();
                if(sta.size()==0) break;
                int l=sta.top();
                int H=min(height[l],height[i])-height[pre];
                sum+=(i-l-1)*H;
            }
            sta.push(i);
         } 
         return sum;
    }
};

 单调队列

滑动窗口 

给定一个大小为 n≤10^6 的数组。

有一个大小为 k的滑动窗口,它从数组的最左边移动到最右边。

你只能在窗口中看到 k 个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为 [1 3 -1 -3 5 3 6 7],k 为 33。

窗口位置最小值最大值
[1 3 -1] -3 5 3 6 7-13
1 [3 -1 -3] 5 3 6 7-33
1 3 [-1 -3 5] 3 6 7-35
1 3 -1 [-3 5 3] 6 7-35
1 3 -1 -3 [5 3 6] 736
1 3 -1 -3 5 [3 6 7]37

你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式

输入包含两行。

第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。

第二行有 n 个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式

输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入样例:

8 3
1 3 -1 -3 5 3 6 7

输出样例:

-1 -3 -3 -3 3 3
3 3 5 5 6 7

#include<iostream>
#include<algorithm>
#include<deque>
using namespace std;
const int N=1e6+10;
deque<int>q;
int a[N];
int main()
{
    int n,k;scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    //每个位置滑动窗口中的最小值--单调递增队列
    for(int i=1;i<=n;i++)
    {
        //新进入窗口的值小于队尾元素,则队尾出队列
        while(q.size()&&a[i]<q.back())  q.pop_back();
        q.push_back(a[i]);//将新进入的元素入队
        if(i-k>0&&q.front()==a[i-k]) q.pop_front();//若队头是否滑出了窗口,队头出队
        if(i>=k) cout<<q.front()<<" ";//当窗口形成,输出队头对应的值
    }
    cout<<endl;
    q.clear();
    //每个位置滑动窗口中的最大值--单调递减队列
    for(int i=1;i<=n;i++)
    {
        while(q.size()&&a[i]>q.back()) q.pop_back();
        q.push_back(a[i]);
        if(i-k>0&&q.front()==a[i-k]) q.pop_front();
        if(i>=k) cout<<q.front()<<" ";
    }
    return 0;
}

E. Rudolf and k Bridges(DP+单调队列)

Example

input

5

3 11 1 4

0 1 2 3 4 5 4 3 2 1 0

0 1 2 3 2 1 2 3 3 2 0

0 1 2 3 5 5 5 5 5 2 0

4 4 2 1

0 3 3 0

0 2 1 0

0 1 2 0

0 3 3 0

4 5 2 5

0 1 1 1 0

0 2 2 2 0

0 2 1 1 0

0 3 2 1 0

1 8 1 1

0 10 4 8 4 4 2 0

4 5 3 2

0 8 4 4 0

0 3 4 8 0

0 8 1 10 0

0 10 1 5 0

output

4
8
4
15
14
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<deque>
#include<set>
using namespace std;
typedef long long ll;
const int N=110,M=2e5;
ll a[M];
ll f[M];
int main()
{
	int t;cin>>t;
	while(t--)
	{
		int n,m,k,d;cin>>n>>m>>k>>d;
	    vector<ll>v;
	    //采用dp+单调队列
	    for(int i=1;i<=n;i++)
	    {
	    	for(int j=1;j<=m;j++) cin>>a[j];
	    	memset(f,0,sizeof f);
	    	f[1]=1;
	    	deque<ll>q;
	    	q.push_back(1);
	    	for(int j=2;j<=m;j++)
	    	{
	    		//若长度大于d 将对头弹出
	    		while(q.size()&&j-q.front()-1>d) q.pop_front();
	    		//此时f[j]的最小值
	    		f[j]=f[q.front()]+a[j]+1;
	    		//单调递增队列
	    		while(q.size()&&f[j]<=f[q.back()]) q.pop_back();
	    		//推入队列中
	    		q.push_back(j);
			}
			q.clear();
			v.push_back(f[m]);
		
		}
	
	    ll min1=1e18;
	    for(int i=0;i+k<=v.size();i++)
	    {
	    	ll num=0;
	    
	    	for(int j=i;j<i+k;j++)
	    	{
	    		num+=v[j];
	    	
			}
			min1=min(min1,num);
		}
		cout<<min1<<endl;
	}
		
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值