题目描述
话说大诗人李白,一生好饮。幸好他从不开车。
一天,他提着酒壶,从家里出来,酒壶中有酒 2 斗。他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店 N 次,遇到花 M 次。已知最后一次遇到的是花, 他正好把酒喝光了。
请你计算李白这一路遇到店和花的顺序,有多少种不同的可能?
注意:壶里没酒 ( 0 斗) 时遇店是合法的,加倍后还是没酒;但是没酒时遇花是不合法的。
输入格式
第一行包含两个整数 N 和 M.
输出格式
输出一个整数表示答案。由于答案可能很大,输出模 1000000007 的结果。
样例输入
5 10
样例输出
14
提示
如果我们用 0 代表遇到花,1 代表遇到店,14 种顺序如下:
010101101000000
010110010010000
011000110010000
100010110010000
011001000110000
100011000110000
100100010110000
010110100000100
011001001000100
100011001000100
100100011000100
011010000010100
100100100010100
101000001010100
对于 40% 的评测用例:1 ≤ N, M ≤ 10。
对于 100% 的评测用例:1 ≤ N, M ≤ 100。
暴力(DFS+剪枝) (过一半数据)
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#define int long long
using namespace std;
const int N=110,mod=1000000007;
int n,m;
int ans;
void dfs(int num1,int num2,int sum)
{
//剪枝
if(sum<0) return ;
if(num1>n||num2>m) return ;
if(num1==n&&m-num2!=sum) return ;//店都走完 剩下的酒与花不同剪枝
if(num2==m&&num1<n) return ;//花用完了 店还要没有走完
if(num2==m)
{
if(num1==n&&sum==0) ans++;
ans%=mod;
return ;
}
if(n-num1>=m-num2) return ;//剩余的店要小于花 否则一个×2 一个减一 到最后不能用完
dfs(num1+1,num2,sum*2);
dfs(num1,num2+1,sum-1);
}
signed main()
{
cin>>n>>m;
dfs(0,0,2);
cout<<ans<<endl;
return 0;
}
DP
#include<iostream>
#include<algorithm>
using namespace std;
const int N=110,M=2*N,mod=1000000007;
int f[M][N][N];//f[i][j][k]表示走到第i个位置(次)遇到了j朵花 还剩k斗酒的方案数
int n,m;
int main()
{
cin>>n>>m;
f[0][0][2]=1;
for(int i=1;i<n+m;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k<=m;k++)
{
//如果第i个位置是店 k必须是偶数 因为它是2倍2倍变化的
if(k%2==0) f[i][j][k]=(f[i][j][k]+f[i-1][j][k/2])%mod;
if(j>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k+1])%mod;
}
}
}
cout<<f[n+m-1][m-1][1]<<endl;
return 0;
}
记忆化搜索
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=110,mod=1000000007;
int f[N][N][N];
int n,m;
int dfs(int n,int m,int k)
{
if(f[n][m][k]!=-1) return f[n][m][k];
if(n==0&&m==1&&k==1)
{
f[n][m][k]=1;
return 1;
}
if(k<0||k>110||n<0||m<0)
{
f[n][m][k]=-1;
return 0;
}
int ans=0;
if(n>0&&m>=0)ans+=dfs(n-1,m,k*2);
if(n>=0&&m>0) ans+=dfs(n,m-1,k-1);
ans%=mod;
f[n][m][k]=ans;
return ans;
}
int main()
{
cin>>n>>m;
memset(f,-1,sizeof f);
cout<<dfs(n,m,2)<<endl;
return 0;
}
#include <iostream>
using namespace std;
const int mod = 1e9+7;
int dp[101][101][101];
int dfs(int n,int m,int d){
if(n==0&&m==1&&d==1)
return 1;
if (m < 1 || n < 0 || d < 1||(d+n)>m) return 0;//剪枝,同时保证d不大于100
if (dp[n][m][d]) return dp[n][m][d];
return dp[n][m][d]=(dfs(n-1,m,d*2)+dfs(n,m-1,d-1))%mod;
}
int main()
{
int n,m;
cin>>n>>m;
cout<<dfs(n,m,2)<<endl;
return 0;
}