树状数组+线段树

一、树状数组和线段树的区别

线段树可以在O(log(N))时间复杂度内寻找区间极值区间和线段树创建时间复杂度O(log(N))空间复杂度O(>=2n-1)树状数组可以O(log(N))的时间复杂度内计算区间极值区间和,树状数组的创建时间复杂度为(Nlog(N),空间复杂度为O(N).线段树求解的区间是任意的,越界也无所谓,但是树状数组求解的区间必须是从1开始的合法区间

二、树状数组

 

 核心代码

lowbit:
int lowbit(int x)
{
    return x&-x;
}
查询:
for(int i=x;i;i-=lowbit(i)) sum+=tr[i];
更改:
for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;

楼兰图腾 

在完成了分配任务之后,西部 314 来到了楼兰古城的西部。

相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀(V),一个部落崇拜铁锹(),他们分别用 V 和  的形状来代表各自部落的图腾。

西部 314 在楼兰古城的下面发现了一幅巨大的壁画,壁画上被标记出了 n 个点,经测量发现这 n 个点的水平位置和竖直位置是两两不同的。

西部 314314 认为这幅壁画所包含的信息与这 n 个点的相对位置有关,因此不妨设坐标分别为 (1,y1),(2,y2),…,(n,yn),其中 y1∼yn 是 1 到 n 的一个排列。

西部 314314 打算研究这幅壁画中包含着多少个图腾。

如果三个点 (i,yi),(j,yj),(k,yk) 满足 1≤i<j<k≤n 且 yi>yj,yj<yk,则称这三个点构成 V 图腾;

如果三个点 (i,yi),(j,yj),(k,yk)满足 1≤i<j<k≤n 且 yi<yj,yj>yk,则称这三个点构成  图腾;

西部 314 想知道,这 n 个点中两个部落图腾的数目。

因此,你需要编写一个程序来求出 V 的个数和  的个数。

输入格式

第一行一个数 n。

第二行是 n 个数,分别代表 y1,y2,…,yn

输出格式

两个数,中间用空格隔开,依次为 V 的个数和  的个数。

数据范围

对于所有数据,n≤200000,且输出答案不会超过 int64。
y1∼yn 是 1 到 n 的一个排列。

输入样例:

5
1 5 3 2 4

输出样例:

3 4

#include <iostream>
#include <cstdio>

using namespace std;

const int N = 2000010;

typedef long long LL;

int a[N];
//ll[i]表示i的左边比第i个数小的数的个数
//rl[i]表示i的右边比第i个数小的数的个数
//lg[i]表示i的左边比第i个数大的数的个数
//rg[i]表示i的右边比第i个数大的数的个数
int ll[N], rl[N], lg[N], rg[N];

int main()
{
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);

    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j < i; j++)
        {
            //a[]保存的是1 ~ n的一个排列,不可能相等
            if(a[j] < a[i]) ll[i] ++;
            else lg[i] ++;
        }
    }

    for(int i = 1; i <= n; i++)
    {
        for(int j = n; j > i; j--)
        {
            if(a[j] < a[i]) rl[i] ++;
            else rg[i] ++;
        }
    }

    LL resV = 0, resA = 0;
    for(int i = 1; i <= n; i++)
    {
        resV += (LL)lg[i] * rg[i];
        resA += (LL)ll[i] * rl[i];
    }

    printf("%lld %lld\n", resV, resA);

    return 0;
}
#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int N = 2000010;

typedef long long LL;

int n;
//t[i]表示树状数组i结点覆盖的范围和
int a[N], t[N];
//Lower[i]表示左边比第i个位置小的数的个数
//Greater[i]表示左边比第i个位置大的数的个数
int Lower[N], Greater[N];

//返回非负整数x在二进制表示下最低位1及其后面的0构成的数值
int lowbit(int x)
{
    return x & -x;
}

//将序列中第x个数加上k。
void add(int x, int k)
{
    for(int i = x; i <= n; i += lowbit(i)) t[i] += k;
}
//查询序列前x个数的和
int ask(int x)
{
    int sum = 0;
    for(int i = x; i; i -= lowbit(i)) sum += t[i];
    return sum;
}

int main()
{

    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);

    //从左向右,依次统计每个位置左边比第i个数y小的数的个数、以及大的数的个数
    for(int i = 1; i <= n; i++)
    {
        int y = a[i]; //第i个数

        //在前面已加入树状数组的所有数中统计在区间[1, y - 1]的数字的出现次数
        Lower[i] = ask(y - 1); 

        //在前面已加入树状数组的所有数中统计在区间[y + 1, n]的数字的出现次数
        Greater[i] = ask(n) - ask(y);

        //将y加入树状数组,即数字y出现1次
        add(y, 1);
    }

    //清空树状数组,从右往左统计每个位置右边比第i个数y小的数的个数、以及大的数的个数
    memset(t, 0, sizeof t);

    LL resA = 0, resV = 0;
    //从右往左统计
    for(int i = n; i >= 1; i--)
    {
        int y = a[i];
        resA += (LL)Lower[i] * ask(y - 1);
        resV += (LL)Greater[i] * (ask(n) - ask(y));

        //将y加入树状数组,即数字y出现1次
        add(y, 1);
    }

    printf("%lld %lld\n", resV, resA);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值