一、树状数组和线段树的区别
线段树可以在O(log(N))时间复杂度内寻找区间极值和区间和,线段树的创建时间复杂度为O(log(N))和空间复杂度O(>=2n-1),树状数组可以O(log(N))的时间复杂度内计算区间极值和区间和,树状数组的创建时间复杂度为(Nlog(N),空间复杂度为O(N).线段树求解的区间是任意的,越界也无所谓,但是树状数组求解的区间必须是从1开始的合法区间。
二、树状数组
核心代码
lowbit:
int lowbit(int x)
{
return x&-x;
}
查询:
for(int i=x;i;i-=lowbit(i)) sum+=tr[i];
更改:
for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;
楼兰图腾
在完成了分配任务之后,西部 314 来到了楼兰古城的西部。
相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀(V
),一个部落崇拜铁锹(∧
),他们分别用 V
和 ∧
的形状来代表各自部落的图腾。
西部 314 在楼兰古城的下面发现了一幅巨大的壁画,壁画上被标记出了 n 个点,经测量发现这 n 个点的水平位置和竖直位置是两两不同的。
西部 314314 认为这幅壁画所包含的信息与这 n 个点的相对位置有关,因此不妨设坐标分别为 (1,y1),(2,y2),…,(n,yn),其中 y1∼yn 是 1 到 n 的一个排列。
西部 314314 打算研究这幅壁画中包含着多少个图腾。
如果三个点 (i,yi),(j,yj),(k,yk) 满足 1≤i<j<k≤n 且 yi>yj,yj<yk,则称这三个点构成 V
图腾;
如果三个点 (i,yi),(j,yj),(k,yk)满足 1≤i<j<k≤n 且 yi<yj,yj>yk,则称这三个点构成 ∧
图腾;
西部 314 想知道,这 n 个点中两个部落图腾的数目。
因此,你需要编写一个程序来求出 V
的个数和 ∧
的个数。
输入格式
第一行一个数 n。
第二行是 n 个数,分别代表 y1,y2,…,yn
输出格式
两个数,中间用空格隔开,依次为 V
的个数和 ∧
的个数。
数据范围
对于所有数据,n≤200000,且输出答案不会超过 int64。
y1∼yn 是 1 到 n 的一个排列。
输入样例:
5
1 5 3 2 4
输出样例:
3 4
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 2000010;
typedef long long LL;
int a[N];
//ll[i]表示i的左边比第i个数小的数的个数
//rl[i]表示i的右边比第i个数小的数的个数
//lg[i]表示i的左边比第i个数大的数的个数
//rg[i]表示i的右边比第i个数大的数的个数
int ll[N], rl[N], lg[N], rg[N];
int main()
{
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
for(int i = 1; i <= n; i++)
{
for(int j = 1; j < i; j++)
{
//a[]保存的是1 ~ n的一个排列,不可能相等
if(a[j] < a[i]) ll[i] ++;
else lg[i] ++;
}
}
for(int i = 1; i <= n; i++)
{
for(int j = n; j > i; j--)
{
if(a[j] < a[i]) rl[i] ++;
else rg[i] ++;
}
}
LL resV = 0, resA = 0;
for(int i = 1; i <= n; i++)
{
resV += (LL)lg[i] * rg[i];
resA += (LL)ll[i] * rl[i];
}
printf("%lld %lld\n", resV, resA);
return 0;
}
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 2000010;
typedef long long LL;
int n;
//t[i]表示树状数组i结点覆盖的范围和
int a[N], t[N];
//Lower[i]表示左边比第i个位置小的数的个数
//Greater[i]表示左边比第i个位置大的数的个数
int Lower[N], Greater[N];
//返回非负整数x在二进制表示下最低位1及其后面的0构成的数值
int lowbit(int x)
{
return x & -x;
}
//将序列中第x个数加上k。
void add(int x, int k)
{
for(int i = x; i <= n; i += lowbit(i)) t[i] += k;
}
//查询序列前x个数的和
int ask(int x)
{
int sum = 0;
for(int i = x; i; i -= lowbit(i)) sum += t[i];
return sum;
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
//从左向右,依次统计每个位置左边比第i个数y小的数的个数、以及大的数的个数
for(int i = 1; i <= n; i++)
{
int y = a[i]; //第i个数
//在前面已加入树状数组的所有数中统计在区间[1, y - 1]的数字的出现次数
Lower[i] = ask(y - 1);
//在前面已加入树状数组的所有数中统计在区间[y + 1, n]的数字的出现次数
Greater[i] = ask(n) - ask(y);
//将y加入树状数组,即数字y出现1次
add(y, 1);
}
//清空树状数组,从右往左统计每个位置右边比第i个数y小的数的个数、以及大的数的个数
memset(t, 0, sizeof t);
LL resA = 0, resV = 0;
//从右往左统计
for(int i = n; i >= 1; i--)
{
int y = a[i];
resA += (LL)Lower[i] * ask(y - 1);
resV += (LL)Greater[i] * (ask(n) - ask(y));
//将y加入树状数组,即数字y出现1次
add(y, 1);
}
printf("%lld %lld\n", resV, resA);
return 0;
}