【运筹学】第4讲 线性代数基础

本文介绍了线性代数的基础,包括研究目的(解线性方程和推广n元方程组)、矩阵与行列式的概念、秩的重要性、矩阵乘法法则以及如何通过矩阵的秩理解矩阵的性质,如秩的唯一性和矩阵逆的介绍。同时,还讨论了行列式的几何意义及其与矩阵秩的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


笔记来源: b站 王树尧SJTU

本节主要对线性代数整体的研究思路(矩阵、行列式的引出)进行梳理,基础计算方法等请自行复习线性代数;

一、研究线性代数目的

1、目的:解线性方程(未知数次数为1的方程)

2、n元方程组的推广过程

在这里插入图片描述

3、n元方程组研究步骤

  • 有没有解?
  • 怎么解?
  • 解是什么?

二、关于方程的经典想法(几何)

在这里插入图片描述

三、方法论

对于一个多元一次方程组,解方程的核心就是对各未知数的系数与解进行处理,显而易见,只有系数与解才是有效的系统信息。

【矩阵】【矩阵乘法】的引入

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值