在层次聚类中选择使用“平均连锁”(Average Linkage)还是“质心距离”(Centroid Distance)取决于数据的特性以及你希望聚类结果的表现。没有一种方法在所有情况下都是“最好”的,二者各有优缺点。
一.平均连锁(Average Linkage)
优点:
适用于不规则形状的簇:因为它计算的是簇内所有点对的平均距离,因此在簇形状比较复杂或者不规则的情况下,能够更好地反映簇的相似性。
对离群点不太敏感:相对于质心距离,平均连锁方法会考虑簇内所有点之间的距离,因此它对个别离群点或极端值的影响较小。
缺点:
计算量大:需要计算每对点之间的距离,尤其是在数据量很大的时候,计算复杂度相对较高。
可能低估簇间的相似性:由于它使用的是所有点之间的平均距离,在簇形态复杂的情况下,可能会忽略簇内部局部的密集或稀疏性特征,导致不够精准。
二. 质心距离(Centroid Distance)
优点:
计算更高效:质心距离只需要计算簇的质心(即簇内所有点的均值)之间的距离,计算量通常比平均连锁要小,尤其是在数据集非常大的时候。
适合规则形状的簇:如果数据中的簇比较规则(例如,球形或接近球形),质心距离可以很好地反映簇的相似性,因为簇的质心能够代表簇的整体位置。
缺点:
对簇形状要求较高:如果簇的形状非常不规则或存在较大的形态差异,质心距离可能无法很好地反映簇之间的相似性。
对离群点较敏感:质心距离计算的是簇质心之间的距离,如果簇内有离群点或极端值,可能会导致质心偏移,影响最终的聚类效果。
三.选择依据
1.数据簇的形状:
如果你的数据簇形状较为规则(如球形簇),质心距离可能会表现得更好。
如果数据簇形状复杂或不规则(如椭圆形、链状等),平均连锁方法可能会更合适,因为它不会过度依赖簇的质心。
2.对计算效率的要求:
如果你的数据量较大且希望提高计算效率,质心距离通常会比平均连锁更有效,因为质心距离不需要计算所有点对之间的距离。
3.对离群点的敏感性:
如果数据中有离群点,并且你希望聚类方法能够尽量不受离群点影响,平均连锁可能会更好,因为它考虑的是簇内所有点之间的相似性,而质心距离可能会因为离群点而偏离真实的簇中心。
四.总结
如果数据簇形状较规则,且希望提高计算效率,可以选择质心距离。
如果数据簇形状较为复杂、不规则,且希望得到更精确的聚类结果,可以选择平均连锁。