topsis方法

前言:昨天写了一篇熵权法的文章,我想可能有部分数模小白们只是根据公式来机械的实现代码,而并没有很好的理解算法的内涵,所以我想用比较通俗易懂的方法来解释这些算法。希望能够帮助到同样热爱数模的同学们,我们一起学习,一起进步!

topsis法,又称优劣解距离法,是数学建模中很经典的方法。

一.正向化

同熵权法一样,我们需要进行数据的规范化处理,并且这里了解到了对多种指标的处理方法:

上面这些公式需要在编程的时候实现,然而很多时候我们没有很好地理解它们的内涵

稍稍解释一下区间型指标正向化操作的意义:

脱离最优区间之外的指标的值化为它与这个区间端点(可能是最大值也可能是最小值)的距离,然后用1-(距离/最大距离)作为这个区间外指标正向化之后的值,区间内指标值直接赋值为1 。同时中间型指标只不过是将区间型指标的两端变为相同的数,其意义是一样的。

二.标准化

标准化的方法有很多种,有zi=xi/Σxi的方法,也有zi=xi/sqrt(Σxi**2) 的方法

但这些标准化的目标都是为了去量纲

三.topsis距离计算

假设有m个指标,n个单位

每一个指标下都有最大值和最小值:

用m维空间中的点来描述能够更好地理解

各个指标下的最大值构成m维空间中的一个最大参照点

各个指标下的最小值构成m维空间中的一个最小参照点

每个单位的在各个指标下的所有数据都是m维空间中的一个点

每个点到最大参照点的距离为Di+

每个点到最小参照点的距离为Di-

(距离的定义类似二维平面和三维空间里的距离)

最终每个单位的得分即为Si=Di-/(Di- + Di+)

显然Di-越大,Di+就越小,表明该单位的总体表现更接近最大参照点,得分就越高

最后归一化,使各单位的得分总和为1

具体实例参见【清风数学建模学习笔记—TOPSIS法】

希望能对你有所帮助!~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值