2025年电工杯A题两篇参考论文发布!

第一版本论文摘要

A题 光伏电站发电功率日前预测问题

光伏发电是通过半导体材料的光电效应,将太阳能直接转化为电能的技术。光伏电站是由众多光伏发电单元组成的规模化发电设施。光伏电站发电功率日前预测是未来24小时至48小时的发电功率进行预测。由于光伏电站上方的云量、阴雨、雾霾等气象因素的不确定性,导致光伏发电功率难以准确预测。因此,如何提升光伏电站发电功率预测精度成为当前工程领域关键技术问题。

针对问题1(发电特性分析),通过预处理历史数据,结合地理信息计算理论发电量,并与实际发电量对比,分析不同电站的效率差异及季节性/日内波动特征。

针对问题2(历史功率预测模型),将光伏功率预测转化为监督学习问题,利用时间序列特征和机器学习模型(LightGBM、LSTM、RandomForest)和深度学习模型(LSTM)进行日前预测。研究结果表明,RandomForest在准确率 Acc25 和 MAPE 上表现更稳健、鲁棒性更强。

针对问题3(NWP融合预测模型),在历史功率数据基础上引入数值天气预报(NWP)信息,构建回归模型,验证NWP对预测精度的提升效果,并分析不同天气条件下的适用性。研究结果表明,融合NWP信息可显著提高预测精度(LightGBM的R²可达0.9517),尤其在晴天条件下表现更优。

针对问题4(NWP空间降尺度对预测精度的影响研究),针对数值天气预报(NWP)数据空间分辨率不足的问题,探索了空间降尺度方法在光伏功率预测中的应用。通过构建"空间降尺度增强特征"(如相邻站点温差temp_diff和辐射差irrad_diff),有效提升了模型对局地气象变化的感知能力。

关键词:发电功率预测;RandomForest;LightGBM;统计分析;空间降尺度

第二版本论文摘要

基于历史功率与NWP信息融合的光伏电站日前发电功率预测研究

摘要

随着光伏发电在电力系统中占比的不断提升,光伏电站发电功率的波动性对电网功率平衡和频率调节带来了严重挑战。本文针对光伏电站日前发电功率预测精度不高的问题,基于肯塔基州伯金市光伏电站的历史数据,构建了多种预测模型并探讨了提升预测精度的技术路径。

针对原始数据存在的缺失值和时间分辨率不统一问题,采用前向填充法处理缺失数据,通过差分计算获得实际发电量,并将数据重采样至15分钟间隔,为后续分析奠定了可靠的数据基础。

问题一通过分析光伏电站发电特性,结合太阳位置理论计算了理论发电功率,运用STL分解方法揭示了发电功率的长周期季节性变化和短周期日内波动规律,通过性能比分析发现年均性能比为85.2%,频谱分析识别出明显的24小时和12小时周期性波动特征。

问题二构建了基于历史功率的LSTM时间序列预测模型,采用7天历史数据预测未来7天发电功率的策略,通过特定的测试集划分方法(每年2、5、8、11月最后一周)进行验证,模型在白昼时段的RMSE为0.0847,MAE为0.0623,相关系数达到0.8934,准确率为91.53%,合格率为76.82%。

问题三建立了融入NWP信息的LightGBM预测模型,将气象参数(POAI、GHI、TmpF)与时间特征相结合,显著提升了预测精度,RMSE降至0.0756,准确率提升至92.44%,合格率达到82.15%。通过场景划分验证发现,在高辐照度、低直射比例和温和温度条件下,NWP信息的融入效果最为显著,进一步优化后的模型RMSE降至0.0698。

问题四探讨了NWP空间降尺度技术的应用效果,采用随机森林算法对粗分辨率气象数据进行空间降尺度处理,生成更精细的气象信息后再输入LightGBM模型进行功率预测,结果表明空间降尺度技术能够有效改善预测精度,RMSE达到0.0742,相关系数提升至0.9026,验证了该技术在MW级光伏电站功率预测中的可行性。

本研究创新性地构建了从历史功率分析到多源信息融合的完整预测体系,提出了基于气象条件的场景划分策略,并验证了NWP空间降尺度技术在光伏功率预测中的有效性,为提高光伏电站日前发电功率预测精度提供了系统性的技术方案,具有重要的工程应用价值。

关键词:光伏发电功率预测;数值天气预报;LSTM神经网络;LightGBM算法;空间降尺度

第一版本论文展示

一、模型假设

为了方便模型的建立与模型的可行性,我们这里首先对模型提出一些假设,使得模型更加完备,预测的结果更加合理。

1.假设给出的数据均为真实数据,真实有效。

2.站点独立性假设:假设各光伏电站之间的运行互不影响,功率输出主要由自身气象条件与设备参数决定,可视为相互独立的预测对象,在模型中可单独建模或合并训练。

3.历史数据代表性假设:假设所给历史数据样本(约一年)具有统计代表性,能够覆盖多种典型天气场景(晴天、多云、阴天)与季节变化,其分布与未来数据一致,可用于训练泛化良好的预测模型。

4.环境与设备稳定性假设:假设预测周期内各电站的硬件设备状态、组件倾角、容量、维护方式等不发生明显改变,不考虑因设备老化、故障或运维导致的突变影响。

二、问题求解与分析

4.1 问题1求解与分析

4.1.1 问题1分析

针对问题1,首先对原始数据进行预处理,包括时间格式转换、缺失值剔除、无效数据过滤等操作,确保数据的可用性与一致性。随后,根据每个站点的地理信息,计算对应时间序列下的太阳高度角,并基于物理模型构建理论容量因子(CF_theory),考虑组件倾角、太阳辐照度、温度效应等因素。实际容量因子(CF_real)通过实测功率除以额定容量得到,在有效辐照条件(如辐照度大于50 W/m²)下提取日间有效数据进行分析。通过对比CF_theory与CF_real,计算每个站点的平均偏差、RMSE、变异系数(CoV)等统计指标,以评估站点运行效率与发电稳定性,并进一步绘制月度趋势、日内典型曲线,分析季节性与波动特征,从而揭示不同站点的发电性能差异与影响因素。

4.1.2 数据集获取与分析

1、数据来源

本研究采用PVOD数据集进行光伏电站发电功率的日前预测分析,该数据集包含10个光伏电站的15分钟分辨率历史发电功率(LMD)及数值天气预报(NWP)数据,时间跨度为2018年7月1日至2019年6月13日。NWP数据由WRF模型生成,涵盖7个关键气象变量,具有较高的完整性和可靠性。该数据集适用于探究季节性和地理因素对预测精度的影响,为光伏发电功率的建模与优化提供了可靠的数据基础。相关数据可通过科学数据库(https://www.scidb.cn/detail?dataSetId=f8f3d7af144f441795c5781497e56b62)获取。具体数据集关键信息变量如表1、表2、表3所示。

表1 数值天气预报数据(NWP,由WRF模型生成)

字段名

中文含义

单位

示例/说明

nwp_globalirrad

全局水平辐照度

W/m²

0(夜间或无日照时)

nwp_directirrad

直接辐射辐照度

W/m²

0

nwp_temperature

气温

22.78(2米高度处的气温)

nwp_humidity

相对湿度

%

96.85(高湿度,可能阴雨)

nwp_windspeed

风速

m/s

4.28(10米高度处的风速)

nwp_winddirection

风向

度(°)

339.41(北风偏西,0°为正北,顺时针增加)

nwp_pressure

大气压

hPa

1007.27

2、数据统计分析与预处理

针对收集的数据,接下来对PVOD 数据集中 10 个光伏电站的功率数据进行数据统计分析与预处理操作。首先是质量分析,围绕缺失率、非零功率比例、单位容量平均功率以及功率波动性等四个核心指标展开,旨在为后续建模、评估和优化提供数据基础判断。

本次对10个光伏电站功率数据的分析表明(表4),各站点数据完整、无缺失,具备良好的建模基础。其中,station05在发电活跃度、单位容量发电效率和功率稳定性方面表现最优,适合作为典型站点建模参考;而station07和station09发电时长较短、波动性较高,需在后续研究中重点关注其不稳定性与潜在异常。整体分析为电站建模分组、性能评估和运维优化提供了重要依据。

图1 各光伏电站装机容量

图1对各光伏电站的装机容量进行了对比分析。从柱状图可以看出,大部分电站的装机容量集中在20000 kW左右,只有station00的容量明显较小,仅为6600 kW,而station05容量最大,达到了35000 kW。这一差异为后续分析各站发电能力及其容量因子的比较提供了重要背景。

4.1.3 问题1建模与求解

1、求解目标

基于光伏电站的实际运行数据和地理位置参数,构建理论可发电功率模型,进而计算容量因子(Capacity Factor, CF)。通过对理论容量因子与实际容量因子的比较,挖掘光伏电站在时间尺度上的发电性能特性,包括:

(1)长周期季节变化趋势

(2)短周期日内波动特性

(3)不同站点之间的差异性和相关性

(6)初始参数指标设定(如表5所示)

图片

表5 参数设置

参数

含义

来源

常用值

ETA = 0.9

光伏组件效率因子

经验值(或从组件规格书)

0.85~0.95

GAMMA= -0.0045

温度影响系数

行业标准、技术文档

-0.003 ~ -0.005

G_STC = 1000

标准太阳辐照度(STC)

国际标准

1000 W/m²

第二版本论文展示

一、问题分析

2.1问题一:基于历史功率的光伏电站发电特性分析

问题一主要针对光伏电站的发电特性进行深入分析,通过结合肯塔基州伯金市光伏电站的地理位置信息(纬度37.8°,经度-84.7°),利用太阳位置计算和晴空模型建立了理论发电功率模型。代码中采用STL分解方法对历史功率数据进行季节性趋势分析,揭示了光伏发电的长周期特性(月度季节性变化),同时通过日内波动分析展现了短周期特性(24小时内的功率变化规律)。通过计算性能比(PR,实际功率与理论功率的比值)和功率偏差分析,定量评估了光伏电站的实际运行效果与理论预期的差异,并运用频谱分析技术识别功率波动的周期性规律,为理解光伏电站在不同时间尺度下的发电特征提供了科学依据。

2.2问题二:基于历史功率的光伏电站日前发电功率预测模型

问题二构建了基于历史功率数据的LSTM深度学习预测模型,该模型采用时间序列预测方法,利用前7天(672个15分钟数据点)的历史功率数据预测未来7天的发电功率。代码中实现了数据预处理、特征标准化、时间序列数据集构建等关键步骤,并通过特定的测试集划分策略(每年2、5、8、11月的最后七天作为测试集)来模拟实际预测场景。模型训练过程中采用了早停策略和梯度裁剪技术来防止过拟合,最终通过多项评估指标(RMSE、MAE、ME、相关系数、准确率C_R、合格率Q_R)对预测效果进行全面评价,为纯基于历史数据的光伏功率预测提供了可行的技术方案。

2.3问题三:融入NWP信息的光伏电站日前发电功率预测模型

问题三在历史功率预测的基础上融入了数值天气预报(NWP)信息,采用LightGBM机器学习算法建立了多特征融合的预测模型。该模型不仅考虑了时间特征(小时、星期、月份、季节),还引入了关键气象参数(POAI斜面辐照度、GHI全球水平辐照度、TmpF温度),通过特征工程和重要性分析揭示了不同因素对光伏发电功率的影响程度。为了验证NWP信息的有效性,代码中还实现了场景划分方案,通过对GHI、POAI比值和温度进行分档处理,识别出不同气象条件下NWP信息对预测精度提升的贡献差异,为实际工程应用中的模型优化和场景适应性提供了重要参考。

2.4问题四:NWP空间降尺度对光伏功率预测精度的影响

问题四探讨了NWP空间降尺度技术在提高光伏功率预测精度方面的可行性,通过构建随机森林回归模型实现了从粗分辨率气象数据到细分辨率气象信息的空间降尺度转换。代码中首先对原始NWP数据(POAI、GHI、TmpF)进行标准化处理,然后结合时空特征(小时、月份、年积日、经纬度)训练降尺度模型,生成更精细的气象预报信息。随后将降尺度后的气象数据作为特征输入到LightGBM预测模型中,通过对比分析验证了空间降尺度技术对光伏功率预测精度的改善效果。这种方法有效解决了传统气象预报空间分辨率与光伏电站实际覆盖范围不匹配的问题,为提高MW级光伏电站发电功率预测的准确性提供了新的技术途径。

二、模型假设

为了方便模型的建立与模型的可行性,我们这里首先对模型提出一些假设,使得模型更加完备,预测的结果更加合理。

1、光伏电站发电功率主要由光伏板表面接收到的太阳辐射总量决定,符合光电转换的基本物理规律

2、不同季节太阳光倾角变化是光伏发电长周期变化的主要驱动因素

3、云量、阴雨、雾霾等气象因素是导致光伏发电短周期波动的主要原因

4、历史数据的统计规律在短期内(日前预测范围)保持相对稳定

5、历史发电功率数据完整可靠,能够反映光伏电站的真实运行状态

6、光伏电站的装机容量、地理位置等基本参数保持不变

7、肯塔基州伯金市的地理位置(纬度37.8°,经度-84.7°)在研究期间保持不变

5.1 问题一模型建立与求解

5.1.1数据预处理

根据数据的结果,我们找的是美国肯塔基州伯金市的E.W. Brown太阳能发电设施(坐标为37.788331, -84.713531),此发电站的信息位于如下网址:

https://www.gem.wiki/w/index.php?title=E.W._Brown_Generating_Station&oldid=684687

所用的数据连接如下所示:

位于kaggle的数据集:

https://www.kaggle.com/datasets/mexwell/e-w-brown-solar-facility?select=BS_2022.csv

其中提供了2016-2022年的发电数据,有的数据满一年,但是有的数据不行,需要自行选择想要的,一共有12列,除了时间和发电的数据外,还包括了温度,GHI、辐照强度和温度等天气因素,符合我们的要求。时间是采样点的形式,1分钟1采样,我们要手动采样成15分钟即可。

对关键列(kW、kWh、POAI、GHI、TmpF、TmpC)采用前向填充:

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值