刷代码随想录有感(131):动态规划——回文子串

题干:

代码:

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>>dp(s.size(), vector<bool>(s.size(), false));
        int res = 0;
        for(int i = s.size() - 1; i >= 0; i--){
            for(int j = i; j < s.size(); j++){
                if(s[i] == s[j]){
                    if((j - i) <= 1){
                        res++;
                        dp[i][j] = true;
                    }else if(dp[i + 1][j - 1] == true){
                        res++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return res;
    }
};

1.定义:我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下标范围[i + 1, j - 1])) 是否是回文。

2.递推:当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

3.遍历顺序:如图dp[i - 1][j + 1] 在左下角,则由左下推后面,从下往上/从左到右,i--/j++,j从i开始递增

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值