题目描述
小Y学过异或后觉得这太简单了,但小H认为小Y太天真了,决定考验一下他,出了一道题:
给出一个数组a,长度为n,分别为a1,a2,a3,...an−1,an。以及qqq次访问,每次给出两个整数 l,r表示区间的左右端点。
对于每次访问,给出一个整数 x(x<231) 使得∑i=lr(x⊕ai)最大
输入描述:
第一行一个整数N (1≤N≤105),表示序列的长度 第二行N个整数,表示序列内的元素(1≤ai<231) 第三行一个整数q,表示询问的个数(1≤q≤105)
接下来q行,每行两个整数 L,R,表示询问的区间
保证L≤R
输出描述:
对于每次访问输出一个对应的x,若有多个解则输出最小的解
示例1
输入
5 1 2 3 4 5 3 1 2 2 4 3 5
输出
2147483644 2147483645 2147483642
说明
第一个样例中,
第一次访问区间[1,2]
区间内的值为1,2
当x取2147483644即1111111111111111111111111111100(31位二进制)时
x^1+x^2的值最大
我们直接用一个二维数组,sum[i][j],其中i表示第i个数,j表示此数是二进制下从左往右数第j位
因为要使最后的异或结果尽可能的大,所以我们考虑每一个数每一位中1出现的次数多还是0出现的次数多。如果是1多,那么最终要求的数这一位就是0,不然这位就是1。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int mod=1e9+7;
const int M=4e4+10;
const int N=1e6+10;
const int INF=0x3f3f3f3f;
int minn=0x3f3f3f3f;
int maxn=0xc0c0c0c0;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
int n,m,k,q;
int a[N];
int sum[N][32];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int j=0;j<31;j++)
{
for(int i=1;i<=n;i++)
{
if((a[i]>>j)&1) sum[i][j]++;
sum[i][j]+=sum[i-1][j];
}
}
cin>>q;
while(q--)
{
int l,r;
cin>>l>>r;
int ans=0;
for(int i=0;i<31;i++)
if((sum[r][i]-sum[l-1][i])*2<r-l+1)
ans|=(1<<i);
cout<<ans<<endl;
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
ll t=1;
// cin>>t;
while(t--)
{
solve();
}
return 0;
}