线段树模板题01

//线段树
#include <iostream>
using namespace std;
const int N = 100010;
long long a[N];

struct Node {
	long long l;
	long long r;
	long long sum;
	long long lazy;
} tr[N * 4];

void pushup(long long u) {
	tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}

void build(long long u, long long l, long long r) {
	tr[u].l = l;
	tr[u].r = r;
	if (l == r) {
		tr[u].sum = a[l];
		return ;
	}
	long long mid = l + r >> 1;
	build(u << 1, l, mid);
	build(u << 1 | 1, mid + 1, r);
	pushup(u);
}

void pushdown(long long u) {
	if (tr[u].lazy) {
		tr[u << 1].lazy += tr[u].lazy;
		tr[u << 1].sum += (tr[u << 1].r - tr[u << 1].l + 1) * tr[u].lazy;
		tr[u << 1 | 1].lazy += tr[u].lazy;
		tr[u << 1 | 1].sum += (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) * tr[u].lazy;
		tr[u].lazy = 0;
	}
}

//区间修改
void modify(long long u, long long l, long long r, long long k) {
	if (l <= tr[u].l && r >= tr[u].r) {
		tr[u].lazy += k;
		tr[u].sum += (tr[u].r - tr[u].l + 1) * k;
		return;
	}
	pushdown(u);
	long long mid = tr[u].l + tr[u].r >> 1;
	if (l <= mid)
		modify(u << 1, l, r, k);
	if (r > mid)
		modify(u << 1 | 1, l, r, k);
	pushup(u);
}

//区间查询
long long query(long long u, long long l, long long r) {
	if (l <= tr[u].l && r >= tr[u].r) {
		return tr[u].sum;
	}
	pushdown(u);
	long long mid = tr[u].l + tr[u].r >> 1;
	long long res = 0;
	if (l <= mid)
		res += query(u << 1, l, r);
	if (r > mid)
		res += query(u << 1 | 1, l, r);
	return res;
}

int main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(false);
	long long n, m;
	cin >> n >> m;

	for (long long i = 1; i <= n; i++) {
		cin >> a[i];
		//	scanf("%d", &a[i]);
	}
	build(1, 1, n);
	for (long long i = 1; i <= m; i++) {
		long long t;
		cin >> t;
		if (t == 1) {
			long long l, r;
			long long k;
			cin >> l >> r >> k;
			modify(1, l, r, k);
		} else {
			long long l, r;
			cin >> l >> r;
			cout << query(1, l, r) << endl;
		}
	}

	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值