蓝桥杯:C++模运算、快速幂

本文介绍了模运算的基本概念及其在大数运算中的作用,探讨了取模的规则,以及如何通过取模操作优化算法如快速幂和矩阵乘法。此外,还涉及到了GCD和LCM的计算及其在编程中的应用。
摘要由CSDN通过智能技术生成

模运算

模运算是大数运算中的常用操作。如果一个数太大,无法直接输出,或者不需要直接输出,则可以对它取模,缩小数值再输出。取模可以防止溢出,这是常见的操作。

模是英文mod的音译,取模实际上是求余。

取模运算一般要求a和m的符号一致,即都为正数或都为负数。如果正负不同,那么请小心处理。

取模操作的加、减、乘满足分配律,注意此时仍要求a+b、a−b、a×b为正数,如果有负数,请小心处理。

例题1.刷题统计

2022年(第十三届)省赛,lanqiaoOJ题号2098

这题用暴力法很好解,但是只能拿到60的测试数据,差不多对一半吧。

暴力法代码:

#include <iostream>
using namespace std;
int main()
{
  // 请在此输入您的代码
  long long a,b,n;  //要用long long 
  cin >> a >> b >> n;
  long long sum = 0,day = 0;  //定义做题数和天数
  while(sum < n){
    day++;
    if(day % 7 == 6 || day % 7 == 0) sum+=b;//周六周日
    else sum+=a;//周一到周五

  }
  cout << day;
  return 0;   //暴力法通过60,后面运行超时,这个是意料之中的。
}

放在取模题中,这也是一道取模的简单题,利用取模操作把计算复杂度降为O(1)。

代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    long long a,b,n;
    cin >> a >> b >> n;
    long long sum=5*a+2*b;//一周总数
    long long day=7*(n/sum);//总数除以一周总数乘以一周7天
    n=n%sum;//剩余题目
    long long d[]={a,a,a,a,a,b,b},i;//设立周数组
    for(i=0;n>0;i++)  
    {
        //当n=0时,就已经满足大于等于n,这个时候的天数就是答案
        n-=d[i];
        day++;
    }
    cout << day; 
    return 0;
}

快速幂

int fastPow(int a, int n) {    //快速幂 
	int ans = 1;               //用ans返回结果,初始化为1,不能初始化为0
	while(n) {                 //把n看成二进制数,逐个处理它的最后一位
		if(n & 1)   ans *= a;  //如果n的最后一位是1,则表示这个地方需要参与计算
		a *= a;                //递推:a2 --> a4 --> a8--> a16-->…
		n >>= 1;               //n右移一位,把刚处理过的n的最后一位去掉
	}
	return ans;                //结果
}

例题1.快速幂

套模板即可,代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;                      //变量改用较大的long long型
ll fastPow(ll a, ll n, ll mod) {
	ll ans = 1;
	a %= mod;                             //非常重要,防止下面的ans*a越界
	while(n) {
		if(n & 1)   ans = (ans*a) % mod;   //取模
		a = a*a % mod;                     //取模
		n >>= 1;
	}
	return ans;       					   //输出结果 
}
int main() {
	ll b,p,k;
	cin>>b>>p>>k;
	cout << fastPow(b,p,k);
	return 0;
}

矩阵乘法

矩阵的加减法很简单,把两个矩阵对应位置的元素进行加减即可得到结果。

矩阵乘法:

for(int i=1; i<=m; i++)     //注:i、j、k的先后顺序不重要,因为对于c[][]来说都一样
	for(int j=1; j<=u; j++)
		for(int k=1; k<=n; k++)
			c[i][j] += a[i][k] * b[k][j]);

根据矩阵乘法的定义,可以推出下面两个式子。

例题1.矩阵相乘

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=100;
int n,m,k;
int A[N][N],B[N][N],C[N][N];
int multi(int  u, int v) {
	int sum = 0;
	for (int j=0; j<m; j++)  sum += (A[u][j] * B[j][v]);
	return sum;
}
int main() {
	cin >> n >> m >> k;
	for(int i=0; i<n; i++)
		for(int j=0; j<m; j++)    cin >> A[i][j];
	for(int i=0; i<m; i++)
		for(int j=0; j<k; j++)    cin >> B[i][j];
	for(int i=0; i<n; i++)
		for(int j=0; j<k; j++)    C[i][j] = multi(i, j);
	for(int i=0; i<n; i++) {
		for(int j=0; j<k; j++)    cout << C[i][j] << " ";
		cout << endl;
	}
	return 0;
}

GCD和LCM

最大公约数(Greatest Common Divisor,GCD)和最小公倍数(the Least Common Multiple,LCM)。

编程时可以不用自己写GCD代码,而是直接使用库函数。

C++的库函数__gcd()。

__gcd();   //shift  + -,输出_     注意是两个下划线,所以要操作两次shift+-

库函数__gcd()可能会返回负数,见下面的例子。

#include<bits/stdc++.h>
using namespace std;
int main() {
	cout<<__gcd(15, 81)<< endl;    //输出  3
	cout<<__gcd(0, 44)<< endl;     //输出  44
	cout<<__gcd(0, 0)<< endl;      //输出  0
	cout<<__gcd(-6, -15)<< endl;   //输出  -3
	cout<<__gcd(-17,289)<< endl;   //输出  -17
	cout<<__gcd(17,-289)<< endl;   //输出  17
	return 0;
}

LCM:

gcd(a, b)×lcm(a, b) = a×b,即lcm(a, b) = a×b/gcd(a, b) =a/gcd(a, b) ×b。

例题1.等差数列

解析:

代码: 

#include<bits/stdc++.h>
using namespace std;
int a[100000];
int main() {
	int n;
	cin>>n;
	for(int i=0; i<n; i++)   cin>>a[i];
	sort(a,a+n);
	int d=0;
	for(int i=1; i<n; i++)   d = __gcd(d,a[i]-a[i-1]);    //以{2,5,7}为例
	if(d==0) cout<<n<<endl;    //公差为0,直接输出n就行
	else     printf("%d\n",(a[n - 1] - a[0]) / d + 1); 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值