1、k倍区间
#include <iostream>
#include<cmath>
#include<vector>
#include<algorithm>
#include<stack>
using namespace std;
long long sum[100005]; // 前缀和数组
int cnt[100005]; // 记录sum[i]除k得到的余数的个数
int ans;
int main()
{
int n, k;
cin >> n >> k;
cnt[0] = 1; // 特殊情况,余数为0直接自成一个k倍区间
for (int i = 1; i <= n; i++) {
int tmp;
cin >> tmp;
sum[i] = sum[i - 1] + tmp;
// 若sum[i] % k = a, 则cnt[a]表示sum[j] % k = a(j < i)的个数
// 若sum[i] % k = sum[j] % k = a(i > j),则sum[i] - sum[j]为k的倍数,即[j+1,i]为k倍区间
// 所以cnt[a]有多少个,则i就可以和前面多少个j形成k倍区间
ans += cnt[sum[i] % k];
cnt[sum[i] % k]++;
}
cout << ans;
return 0;
}
2、晚会节目单
求字典序最大的序列,采用贪心思想,尽可能保证序列长度满足条件的情况下,令开头元素尽可能大。
#include<iostream>
#include<stdio.h>
#include<cmath>
#include<string.h>
#include<string>
#include<algorithm>
#include<queue>
#include<unordered_map>
#define N 100050
#define int long long
#define MAX 0x3f3f3f3f
using namespace std;
int n, k;
int a[N];
vector<int> res;
void dfs(int x){
if(x > n){
return;
}
int remain = n - x + 1; // remain为剩余可选元素数量
// k - res.size() + 1 <= remain 保证了序列长度最终能满足k
while(!res.empty() && res.back() < a[x] && k - res.size() + 1 <= remain){
res.pop_back();
}
if(res.size() < k){
res.emplace_back(a[x]);
}
dfs(x+1);
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> k;
for(int i = 1; i <= n; i++){
cin >> a[i];
}
dfs(1);
for(int i = 0; i < res.size(); i++){
cout << res[i] << " ";
}
return 0;
}