区间&序列问题笔记

1、k倍区间

#include <iostream>
#include<cmath>
#include<vector>
#include<algorithm>
#include<stack>
using namespace std;

long long sum[100005];  // 前缀和数组
int cnt[100005];        // 记录sum[i]除k得到的余数的个数
int ans;

int main()
{
    int n, k;
    cin >> n >> k;
    cnt[0] = 1;         // 特殊情况,余数为0直接自成一个k倍区间
    for (int i = 1; i <= n; i++) {
        int tmp;
        cin >> tmp;
        sum[i] = sum[i - 1] + tmp;

        // 若sum[i] % k = a, 则cnt[a]表示sum[j] % k = a(j < i)的个数
        // 若sum[i] % k = sum[j] % k = a(i > j),则sum[i] - sum[j]为k的倍数,即[j+1,i]为k倍区间
        // 所以cnt[a]有多少个,则i就可以和前面多少个j形成k倍区间
        ans += cnt[sum[i] % k];
        cnt[sum[i] % k]++;
    }
    cout << ans;
    return 0;
}

2、晚会节目单

用户登录

求字典序最大的序列,采用贪心思想,尽可能保证序列长度满足条件的情况下,令开头元素尽可能大。

#include<iostream>
#include<stdio.h>
#include<cmath>
#include<string.h>
#include<string>
#include<algorithm>
#include<queue>
#include<unordered_map>
#define N 100050
#define int long long
#define MAX 0x3f3f3f3f
using namespace std;

int n, k;
int a[N];
vector<int> res;

void dfs(int x){
	if(x > n){
		return;
	}
	int remain = n - x + 1;	// remain为剩余可选元素数量
	
	//  k - res.size() + 1 <= remain 保证了序列长度最终能满足k 
	while(!res.empty() && res.back() < a[x] && k - res.size() + 1 <= remain){
		res.pop_back();
	}
	if(res.size() < k){
		res.emplace_back(a[x]);
	}
	dfs(x+1);
}

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	
	cin >> n >> k;
	for(int i = 1; i <= n; i++){
		cin >> a[i];
	}
	dfs(1);
	for(int i = 0; i < res.size(); i++){
		cout << res[i] << " ";
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值