- 博客(73)
- 收藏
- 关注
原创 最近公共祖先LCA学习笔记
算法总结参考博客: LCA学习笔记 - Luogu Column相关题目:[蓝桥杯 2022 国 B] 机房 - 洛谷
2024-05-09 16:31:04 125
原创 图论学习笔记
因为一个隔间通向的隔间都是唯一的,不难发现一但来到环上的任何一个房间,必定会绕这个环一圈回到原点。则对于每一个环上的隔间,以其为起点遍历环一圈走的路程是相同的(即环的长度)。所以我们可以根据这个特点,标记环上的每一个房间,一但到达这些隔间就直接返回环的长度。环外的隔间则记录下其到环+环的长度。
2023-06-03 15:19:40 75
原创 线段树笔记
扫描线可用于处理面积并。通过垂直x轴的的扫描线从图形最左向最右扫描,扫描过程中要不断维护沿y轴上的有效长度,即值域内哪些线段对计算面积有贡献,而有效长度可看作一个个有贡献的区间内的线段的和,所以有效长度可利用线段树来维护。注意:由于数据在y轴上范围过大,所以要对数据进行离散化,有效长度也用离散线段树维护(离散线段树叶节点长度为2)先乘后加,懒标记在pushdown过程中顺序很重要。单点修改是区间修改的特例。
2023-05-16 13:01:18 52
原创 ST表笔记
数列每次从数列尾加入数时,为了维护ST表方便,可以维护一个反向的ST表,即以新加入的数为头,依次更新区间(想想为啥ST表不反向会处理比较麻烦?
2023-05-07 20:15:39 45
原创 二叉堆笔记
二叉堆:维护数组中数据优先级的完全二叉树,每个子树皆满足该性质。小根堆和大根堆分别对应堆顶数据优先级最小和优先级最大(也可以是数据的最小值和最大值),堆顶对应树结构的根。二叉堆一般用STL中优先队列priority_queue实现。
2023-04-26 20:18:45 80
原创 卷积神经网络总结
解决卷积核对图像位置过于敏感的问题(如整个图像向右移动一个像素,图像拍摄角度不同,导致输出也不相同),降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。1×1卷积失去了卷积层的特有能力——在高度和宽度维度上,识别相邻元素间相互作用的能力,但其可以调整网络层的通道数量和控制模型复杂性。卷积核的本质类似于提取局部特征(过滤器),当层层卷积核叠加后,卷积核的感受野变大,卷积核的作用逐渐向提取全局抽象特征靠近。多输出通道可以看作是对不同特征的响应,不同卷积核可以提取出不同的特征。3、多输入多输出通道。
2023-04-24 22:34:42 406
原创 并查集笔记
例如,原数组{1,15,8,45,0}进行离散化后的到数组{2,4,3,5,1},显然将原数据范围从45压缩到5,解决了空间不够分配的问题,当然,能够进行离散化的前提条件是:不改变原数组的相对大小,且原数据范围里的每一个数不一定都出现(都出现的话压缩了也相当于没压缩,如{1,2,3,4,5}离散化后仍为{1,2,3,4,5})4、lower_bound重新赋值给原数组:{0,1,1,3,2,4,2}2、sort后:{1,2,2,3,3,5,8}1、原数组{1,2,2,5,3,8,3}
2023-04-24 20:41:55 332
原创 用Numpy、Pandas、Matploblib进行数据分析
归纳了在数据分析中常用的Numpy、Pandas、Matploblib三大模块的基本用法
2023-02-26 14:42:21 276
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人