【算法】动态规划---路径问题

一.[leetcode] 62.不同路径

  • 题目链接: 62. 不同路径
  • 题目描述:
    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
    机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
    问总共有多少条不同的路径?

示例1:
在这里插入图片描述

示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1.向右 -> 向下 -> 向下
2.向下 -> 向下 -> 向右
3.向下 -> 向右 -> 向下

示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6

  • 解法:(动态规划)

    1. 状态表示:
      根据经验+题目要求, 可以得出== dp[i][j]表示到达i , j 位置一共有几种走法.==
    2. 状态转移方程:
      • 简单分析一下。如果 dp[i][j] 表示到达 [i, j] 位置的方法数,那么到达 [i, j] 位置之
        前的一小步,有两种情况:

        • i. 从 [i, j] 位置的上方( [i - 1, j] 的位置)向下走一步,转移到 [i, j] 位置;
        • ii. 从 [i, j] 位置的左方( [i, j - 1] 的位置)向右走一步,转移到 [i, j] 位置。
      • 由此可以推断得出 , 要想到达 dp [ i ] [ j ] 位置, 就只能从上面或者从左边. 即dp [ i-1 ] [ j ] , dp[ i ] [ j-1 ], 又可以根据状态表示的含义可以得出状态转移方程为: dp[ i ][ j ] = dp[ i-1 ][ j ] + dp[ i ][ j-1 ].

    3. 初始化:
      • 可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
        • i. 辅助结点里面的值要「保证后续填表是正确的」;
        • ii. 「下标的映射关系」。
      • 在本题中,「添加一行」,并且「添加一列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
        -在这里插入图片描述
    4. 填表顺序:
      从上往下, 从左向右.
    5. 返回值:
      返回dp[m][n].
  • 代码示例(Java):

class Solution {
    public int uniquePaths(int m, int n) {
        //1.创建dp表
        int[][] dp = new int[m+1][n+1];
        if(n==1){
            return 1;
        }
        //2.初始化
        dp[0][1] = 1;
        //3.填表
        for(int i = 1;i<=m;i++){
            for(int j = 1;j<=n;j++){
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        //4.返回结果
        return dp[m][n];
    }
}

在这里插入图片描述

二.[leetcode] 63.不同路径II

  • 题目链接: 63. 不同路径 II
  • 题目描述:
    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
    机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
    现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
    网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1.向右 -> 向右 -> 向下 -> 向下
2.向下 -> 向下 -> 向右 -> 向右

示例 2:
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

  • 解法:(动态规划)

    1. 状态表示:
      根据经验+题目要求, 可以得出== dp[i][j]表示到达i , j 位置一共有几种走法.==
    2. 状态转移方程:
      • 简单分析一下。如果 dp[i][j] 表示到达 [i, j] 位置的方法数,那么到达 [i, j] 位置之
        前的一小步,有两种情况:
        • i. 从 [i, j] 位置的上方( [i - 1, j] 的位置)向下走一步,转移到 [i, j] 位置;
        • ii. 从 [i, j] 位置的左方( [i, j - 1] 的位置)向右走一步,转移到 [i, j] 位置。
      • 但是, [i - 1, j] 与 [i, j - 1] 位置都是可能有障碍的,此时从上面或者左边是不可能
        到达 [i, j] 位置的,也就是说,此时的方法数应该是 0。
      • 由此我们可以得出一个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
    3. 初始化:
      • 可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
        • i. 辅助结点里面的值要「保证后续填表是正确的」;
        • ii. 「下标的映射关系」。
      • 在本题中,「添加一行」,并且「添加一列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
    4. 填表顺序:
      从上往下, 从左向右.
    5. 返回值:
      返回dp[m][n].
  • 代码示例(Java):

class Solution {
    public int uniquePathsWithObstacles(int[][] ob) {
        int m = ob.length;
        int n = ob[0].length;
        //1.创建dp表
        int[][] dp = new int[m+1][n+1];
        dp[0][1] = 1;
        for(int i = 1;i<=m;i++){
            for(int j =1;j<=n;j++){
                if(ob[i-1][j-1]==1){
                    dp[i][j] = 0;
                }else{
                    dp[i][j] = dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[m][n];
    }
}

在这里插入图片描述

三.[leetcode]LCR 166. 珠宝的最高价值

  • 题目链接: LCR 166. 珠宝的最高价值
  • 题目描述:
    现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:
    只能从架子的左上角开始拿珠宝
    每次可以移动到右侧或下侧的相邻位置
    到达珠宝架子的右下角时,停止拿取
    注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]。

示例 1:
输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝

  • 解法:(动态规划)

    1. 状态表示:
      根据经验+题目要求, 可以得出== 以i, j 为结尾所能获得珠宝的最大价值==
    2. 状态转移方程:
      • 简单分析一下。如果 dp[i][j] 表示到达 [i, j] 位置的方法数,那么到达 [i, j] 位置之
        前的一小步,有两种情况:
        • i. 从 [i, j] 位置的上方( [i - 1, j] 的位置)向下走一步,转移到 [i, j] 位置, 此时所能获得的珠宝价值为 dp[i-1][ j ]+frame[i-1][j-1].
        • ii. 从 [i, j] 位置的左方( [i, j - 1] 的位置)向右走一步,转移到 [i, j] 位置。此时所能获得的珠宝价值为 dp[ i ][ j-1 ]+frame[i-1][j-1].
        • 为了后面方便计算填表,创建dp表的时候,多加了一行和一列.所以对应的frame表中的数据就对应着减一
      • 由此可以推断得出 , 要想到达 dp [ i ] [ j ] 位置, 就只能从上面或者从左边. 即dp [ i-1 ] [ j ] , dp[ i ] [ j-1 ], 又可以根据状态表示的含义可以得出状态转移方程为: dp[ i ][ j ] = Math.max(dp[ i-1 ][ j ] + dp[ i ][ j-1 ])+frame[i-1][j-1]
    3. 初始化:
      • 可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
        • i. 辅助结点里面的值要「保证后续填表是正确的」;
        • ii. 「下标的映射关系」。
      • 在本题中,「添加一行」,并且「添加一列」后,所有的值都为 0 即可。
    4. 填表顺序:
      从上往下, 从左向右.
    5. 返回值:
      返回dp[m][n].
  • 代码示例(Java):

class Solution {
    public int jewelleryValue(int[][] frame) {
        int m = frame.length;
        int n = frame[0].length;
        //1.创建dp表
        int[][] dp = new int[m+1][n+1];
        //2.初始化
        
        //3.填表
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];
            }
        }
        return dp[m][n];
    }
}

在这里插入图片描述

四.[leetcode] 931.下降路径最小和

  • 题目链接: 931.下降路径最小和
  • 题目描述:
    给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。
    下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径
在这里插入图片描述

示例 2:
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径
在这里插入图片描述

  • 解法:(动态规划)

    1. 状态表示:
      根据经验+题目要求,可以得出== dp[i][j]表示以i, j位置为结尾, 下降路径和的最小值.==
    2. 状态转移方程:
      • 对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
        • i. 从正上方 [i - 1, j] 位置转移到 [i, j] 位置;
        • ii. 从左上方 [i - 1, j - 1] 位置转移到 [i, j] 位置;
        • iii. 从右上方 [i - 1, j + 1] 位置转移到 [i, j] 位置;
      • 我们要的是三种情况下的「最小值」,然后再加上矩阵在 [i, j] 位置的值。
      • 于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j + 1])) + matrix[i][j] 。
    3. 初始化:
      • 可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
        • i. 辅助结点里面的值要「保证后续填表是正确的」;
        • ii. 「下标的映射关系」。
      • 在本题中,需要「加上一行」,并且「加上两列」。所有的位置都初始化为无穷大,然后将第一行初始化为 0 即可。
        -在这里插入图片描述
    4. 填表顺序:
      从上往下, 从左向右.
    5. 返回值:
      返回dp[m][n].
  • 代码示例(Java):

class Solution {
    public int minFallingPathSum(int[][] ma) {
        int m = ma.length;
        int n= ma[0].length;
        int result = Integer.MAX_VALUE;
        //1.创建dp表
        int[][] dp = new int[m+1][n+2];
        //2.初始化
        for(int q = 1;q<=m;q++){
            dp[q][0] = dp[q][n+1] = Integer.MAX_VALUE;
        }
        //3.填表
        for(int i = 1;i<=m;i++){
            for(int j = 1;j<=n;j++){
                dp[i][j] = Math.min(Math.min(dp[i-1][j-1],dp[i-1][j]),dp[i-1][j+1])+ma[i-1][j-1];
            }
        }
        //4.返回结果
        for(int p = 1;p<=n;p++){
            result = Math.min(result,dp[m][p]);

        }
        return result;

    }
}

在这里插入图片描述

五.[leetcode] 64. 最小路径和

  • 题目链接: 64. 最小路径和
  • 题目描述:
    给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
    说明:每次只能向下或者向右移动一步。

示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12

  • 解法:(动态规划)

    1. 状态表示:
      根据经验+题目要求,可以得出== dp[i][j]表示以i, j位置为结尾, 最小的路径数字总和.==

    2. 状态转移方程:

      • 简单分析⼀下。如果 dp[i][j] 表⽰到达 到达 [i, j] 位置处的最小路径和,那么到达[i, j] 位置之前的一小步,有两种情况:
        • i. 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
        • ii. 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。
      • 由于到 [i, j] 位置两种情况,并且我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上 [i, j] 位置上本身的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
    3. 初始化:

      • 可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
        • i. 辅助结点里面的值要「保证后续填表是正确的」;
        • ii. 「下标的映射关系」。
      • 在本题中,「添加一行」,并且「添加一列」后,所有位置的值可以初始化为无穷大,然后让dp[0][1] = dp[1][0] = 1 即可。
        在这里插入图片描述
    4. 填表顺序:
      从上往下, 从左向右.

    5. 返回值:
      返回dp[m][n].

  • 代码示例(Java):

class Solution {
    public int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m+1][n+1];
        for(int q = 1;q<=m;q++){
            dp[q][0] = Integer.MAX_VALUE;
        }
        for(int w = 2;w<=n;w++){
            dp[0][w] = Integer.MAX_VALUE;
        }
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];
            }
        }
        return dp[m][n];
    }
}

在这里插入图片描述

六.[leetcode] 174. 地下城游戏

  • 题目链接: 174. 地下城游戏
  • 题目描述:
    恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。
    骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。
    有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。
    为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。
    返回确保骑士能够拯救到公主所需的最低初始健康点数。
    注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:
输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。
在这里插入图片描述

示例 2:
输入:dungeon = [[0]]
输出:1

  • 解法:(动态规划)

    1. 状态表示:
    • 这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。
      那么我们分析状态转移的时候会有一个问题:那就是我们当前的健康点数还会受到后面的路径的影响。也就是从上往下的状态转移不能很好地解决问题。
    • 这个时候我们要换一种状态表示:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点
      数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
    • 综上所述,定义状态表示为:dp[i][j] 表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数
    1. 状态转移方程:
      • 对于 dp[i][j] ,从 [i, j] 位置出发,下一步会有两种选择(为了方便理解,设 dp[i]
        [j] 的最终答案是 x ):
        • i. 走到右边,然后走向终点. 那么我们在 [i, j] 位置的最低健康点数加上这一个位置的消耗,应该要大于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最小值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
        • ii. 走到下边,然后走向终点 , 那么我们在 [i, j] 位置的最低健康点数加上这一个位置的消耗,应该要大于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最小值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;
      • 综上所述,我们需要的是两种情况下的最小值,因此可得状态转移方程为:
        dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
        但是,如果当前位置的 dungeon[i][j] 是一个比较大的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会小于 1 ,那么骑士就会死亡。因此我们求出来的 dp[i][j] 如果小于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取一个最大值即可:dp[i][j] = max(1, dp[i][j])
    2. 初始化
    • 可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
      - i. 辅助结点里面的值要「保证后续填表是正确的」;
      - ii. 「下标的映射关系」。
    • 在本题中,在 dp 表最后面添加一行,并且添加一列后,所有的值都先初始化为无穷大,然后让
      dp[m][n - 1] = dp[m - 1][n] = 1 即可。
    1. 填表顺序:
      从下往上, 从右向左.
    2. 返回值:
      返回dp[0][0].
  • 代码示例(Java):

class Solution {
    public int calculateMinimumHP(int[][] dungeon) {
        int m = dungeon.length;
        int n = dungeon[0].length;
        //1.创建dp表
        int[][] dp = new int[m+1][n+1];
        //2.初始化.
        for(int q = 0;q <= m;q++){
            dp[q][n]= Integer.MAX_VALUE;
        }
        for(int w = 0;w<=n;w++){
            dp[m][w] = Integer.MAX_VALUE;
        }
        dp[m][n-1] = dp[m-1][n] =1;
        //3.填表
        for(int i=m-1;i>=0;i--){
            for(int j=n-1;j>=0;j--){
                dp[i][j] = Math.min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];
                dp[i][j] = Math.max(dp[i][j],1);
            }
        }
        //4.确定返回值
        return dp[0][0];

    }
}

在这里插入图片描述

  • 11
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值