题目描述
用递归方法求 nnn 阶勒让德多项式的值,递归公式为: pn(x)={1,n=0x,n=1(2n−1)xpn−1(x)−(n−1)pn−2(x)n,n>1p_n(x) = \begin{cases} 1, &n = 0 \\ x, &n = 1 \\ \frac{(2n-1) x p_{n-1}(x) - (n-1)p_{n-2}(x)}{n}, &n \gt 1 \end{cases}pn(x)=⎩⎨⎧1,x,n(2n−1)xpn−1(x)−(n−1)pn−2(x),n=0n=1n>1
结果保留2位小数。
输入
nnn 和 xxx 的值。
输出
pn(x)p_n(x)pn(x) 的值。
输入输出样例
样例输入
2 2
样例输出
5.50
提示
主函数已给定如下,提交时不需要包含下述主函数
C:
int main()
{
int x, n;
scanf("%d%d", &n, &x);
printf("%.2f\n", polya(n, x));
return 0;
}
C++:
int main()
{
int x, n;
cin >> n >> x;
cout << setiosflags(ios::fixed);
cout << setprecision(2);
cout << polya(n, x) <