1.假定网络利用率达到了90%。试估计一下现在的网络时延是它的最小值的多少倍?
解:设网络利用率为U0,网络时延为D,网络时延最小值为D0。
已知U=90%,D=D0/(1-U)=D0/(1-0.9),
即D/ D0=10,故现在的网络时延是最小值的10倍。
2.收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。试计算以下两种情况的发送时延和传播时延:
(1) 数据长度为107bit,数据发送速率为100kb/s。
(2) 数据长度为103bit,数据发送速率为1Gb/s。
从上面的计算中可以得到什么样的结论?
解:(1)发送时延:ts=107/105=100s;传播时延tp=106/(2×108)=0.005s
(2)发送时延ts =103/109=1µs;传播时延:tp=106/(2×108)=0.005s
结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。
3.长度为100字节的应用层数据交给传输层传送,需加上20字节的TCP首部。再交给网络层传送,需加上20字节的IP首部。最后交给数据链路层的以太网传送,加上首部和尾部共18字节。试求数据的传输效率。数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。若应用层数据长度为1000字节,数据的传输效率是多少?
解:(1)100/(100+20+20+18)=63.3%
(2)1000/(1000+20+20+18)=94.5%
4.设结点A和结点B两端已建立TCP连接,它们之间的传输距离为2000km,信号在媒体上的传播速率为2×108m/s。结点A要将一个1×106B数据以100×106bit/s的速率连续发送给结点B,B正确收完该数据后,就立即向A发送确认。假定A只有在收到B的确认信息后,才能继续向B发送数据,且确认信息很短。若忽略排队时延和处理时延,计算A向B发送数据的有效数据率。
解:由题意知,结点A发送完1×106B的数据,收到结点B的确认后才能继续发送,即:有效数据率=1×106B/(发送时延+RTT)。
发送时延=数据帧长度/发送速率=1×106B/100×106b/s=0.08s;
传播时延=信道长度/信号在信道中的传播速率=2000km/2×105km/s=0.01s;
有效数据率=1×106B/(发送时延+RTT)=1×106B/(0.08+0.01×2)=80×106b/s。
5.假定要在网络上传送1.5MB的文件。设分组长度为1KB,往返时间RTT=80ms。传送数据之前还需要有建立TCP连接的时间,这时间是2×RTT=160ms。试计算在以下几种情况下接收方收完该文件的最后一个比特所需的时间。
(1)数据发送速率为10Mb/s,数据分组可以连续发送。
(2)数据发送速率为10Mb/s,但每发送完一个分组后要等待一个RTT时间才能再发送一个分组。
(3)数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返时间内只能发送20个分组。
(4)数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即2^(3-1)=2^2=4个分组)
解:题目的已知条件中的M=2^20=1048576,K=2^10=1024。
(1)发送这些比特所需时间=1.5×2^20 ×8bit/(10×10^6bit/s)=1.258s。
最后一个分组的传播时间还需要0.5×RTT=40ms。
总共需要的时间=2×RTT+1.258+0.5×RTT=0.16+1.258+0.04=1.458s。
(2)需要划分的分组数=1.5MB/1KB=1536。
从第一个分组到达直到最后一个分组到达要经历1535×RTT=1535×0.08=122.8s。
总共需要的时间=1.458+122.8=124.258s。
(3)在每一个RTT往返时间内只能发送20个分组。1536个分组,需要76个RTT,76个RTT可以发送76×20=1520个分组,最后剩下16个分组,一次发送完。但最后一次发送的分组到达接收方也需要0.5×RTT。因此,总共需要的时间=76.5×RTT+2×RTT=6.12+0.16=6.28s。
(4)在两个RTT后就开始传送数据。
经过n个RTT后就发送了1+2+4+…+2^n=2^(n+1)-1个分组。
若n=9,那么只发送了2^10-1=1023个分组。可见9个RTT不够。
若n=10,那么只发送了2^11-1=2047个分组。可见10个RTT足够了。
这样,考虑到建立TCP连接的时间和最后的分组传送到终点需要的时间,现在总共需要的时间=(2+10+0.5)×RTT=12.5×0.08=1s。