解题思路
并查集+dfs。
由题知,树形结构中两个节点相连出现环,则可知只有一个环,那么当每次输入两个点时利用并查集判断两个点的祖先是否相同,如果不相同则两个点合并;如果相同则说明这两点间的边已经形成了环,则此时可以通过这两点作为环的起点和终点,用dfs搜索这一路径,所经过的点即为环上的点
解题代码
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
int f[N], rk[N], ring[N];
bool vis[N], found;
vector<int> vec[N];
int n;
int index;
void init(int n)
{
for(int i = 1; i <= n; i++)
{
f[i] = i;
rk[i] = 0;
}
}
int find(int x)
{
if(f[x] == x)
return x;
else
return find(f[x]);
}
void merge(int a, int b)
{
int fa = find(a), fb = find(b);
if(rk[fa] <= rk[fb])
f[fa] = fb;
else
f[fb] = fa;
if(rk[fa] == rk[fb] && fa != fb)
rk[fb]++;
}
void dfs(int now, int tar)
{
if(found)
return;
if(now == tar)
{
found = true;
sort(ring + 1, ring + 1 + index);
for(int i = 1; i < index; i++)
cout << ring[i] << ' ';
cout << ring[index] << endl;
return;
}
for(int i = 0; i < vec[now].size(); i++)
{
if(!vis[vec[now][i]])
{
vis[vec[now][i]] = true;
ring[++index] = vec[now][i];
dfs(vec[now][i], tar);
index--;
vis[vec[now][i]] = false;
}
}
}
int main()
{
cin >> n;
init(n);
int a, b;
int fa, fb;
int Begin, End;
for(int i = 1; i <= n; i++)
{
cin >> a >> b;
vec[a].push_back(b), vec[b].push_back(a);
fa = find(a), fb = find(b);
if(fa != fb)
merge(fa, fb);
else
{
Begin = a;
End = b;
}
}
vis[Begin] = true;
ring[++index] = Begin;
dfs(Begin, End);
return 0;
}