题目描述
题目分析
直接用模拟法,按照题目意思进行求解,但是注意一个小细节!!!!
在旋转操作中,对y坐标进行操作时,使用的还是还未改变的x下标,所以应当用temp_x存储未变化的x。
double temp_x = b[i][2]; // 先存储未变换前的值,防止计算y时被更新
b[i][2] = b[i][2]* cos(a[index][1]) - b[i][3]* sin(a[index][1]);
b[i][3] = temp_x * sin(a[index][1]) + b[i][3]* cos(a[index][1]);
但是超时了,得到了80分
超时原因如下
对于每个查询,都需要遍历指定范围内的所有操作。当操作数和查询数都很大(高达 10^5)时,时间复杂度为 ,总的计算次数会达到 ,无法在合理时间内完成。
超时代码如下(80分)
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, m; //输入操作和查询个数
cin >> n >> m;
//定义操作数和查询数的数组
double a[n][2];
double b[m][4];
//存入操作数
for (int i = 0; i < n; i++) {
for (int j = 0; j < 2; j++) {
cin >> a[i][j];
}
}
//存入查询数
for (int i = 0; i < m; i++) {
for (int j = 0; j < 4; j++) {
cin >> b[i][j];
}
}
//对查询数进行操作
for (int i = 0; i < m; i++) {
//判断要对查询数进行操作的范围
int time = b[i][1] - b[i][0] + 1 ; //记录需要操作的次数,因为第一次也算,要加1
int index = b[i][0] - 1; //记录操起始操作的下标
while (time > 0) { //计算执行次数
if (a[index][0] == 1) { //说明是拉伸变换
b[i][2] *= a[index][1];
b[i][3] *= a[index][1];
}
if (a[index][0] == 2) { //说明是旋转变换
double temp_x = b[i][2]; // 先存储未变换前的值,防止计算y时被更新
b[i][2] = b[i][2]* cos(a[index][1]) - b[i][3]* sin(a[index][1]);
b[i][3] = temp_x * sin(a[index][1]) + b[i][3]* cos(a[index][1]);
}
time--; //操作完一次,计数减少一次
index++; //起始操作地址加1
}
//对一个查询操作完毕,进行输出
printf("%f %f" "\n", b[i][2],b[i][3]);
}
return 0;
}
经过优化,对每个位置进行缩放和旋转的积累的预处理操作,将时间复杂度降到O(n + m)
输在了数学上
// 预处理累积缩放系数和旋转角度
vector<double> scale(n + 1, 1.0);
vector<double> angle(n + 1, 0.0 ); //起始就是那个θ值
预处理累积缩放系数和旋转角度:
定义两个数组 scale
和 angle
,其中:
-
scale[i]
表示从第 1 个操作到第 i 个操作的总缩放系数; -
angle[i]
表示从第 1 个操作到第 i 个操作的总旋转角度
// 预处理累积缩放系数和旋转角度
vector<double> scale(n + 1, 1.0);
vector<double> angle(n + 1, 0.0 ); //起始就是那个θ值
难点:在那一段区间的操作,基于 前缀和进行操作
在分别计算出累加的缩放和旋转系数后
//在那一个区间的总的拉伸和旋转系数,分别用除法和减法代表区间内积累的值,非常巧妙
double total_scale = scale[r] / scale[l - 1];
double total_angle = angle[r] - angle[l - 1];
具体代码
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, m;
cin >> n >> m;
vector<int> op_type(n + 1); // 操作类型,1 为拉伸,2 为旋转
vector<double> op_value(n + 1); // 操作对应的值(k 或 θ)
// 输入操作
for (int i = 1; i <= n; ++i) {
cin >> op_type[i] >> op_value[i];
}
// 预处理累积缩放系数和旋转角度
//数学积累:经过n次旋转变换后的坐标(x,y),等同于绕原点角度 (θ1+θ2) 的角度,即可以不断累加
vector<double> scale(n + 1, 1.0);
vector<double> angle(n + 1, 0.0 ); //起始就是那个θ值
for (int i = 1; i <= n; i++) {
if (op_type[i] == 1) { //说明为缩放操作
//此时缩放系数变化,拉伸系数保持不变
scale[i] = scale[i - 1] * op_value[i];
angle[i] = angle[i - 1];
}
else { //说明为旋转操作
//此时拉伸系数变化,旋转系数保持不变
scale[i] = scale[i - 1];
angle[i] = angle[i - 1] + op_value[i];
}
}
// 处理查询
for (int i = 0; i < m; i++) {
int l, r; //操作的左区间和右区间
double x, y; //每一行的查询数的坐标
cin >> l >> r >> x >> y;
//利用了前缀和
//在那一个区间的总的拉伸和旋转系数,分别用除法和减法代表区间内积累的值,非常巧妙
double total_scale = scale[r] / scale[l - 1];
double total_angle = angle[r] - angle[l - 1];
// 应用缩放
x *= total_scale;
y *= total_scale;
// 应用旋转,保存原始坐标
double orig_x = x;
double orig_y = y;
x = orig_x * cos(total_angle) - orig_y * sin(total_angle);
y = orig_x * sin(total_angle) + orig_y * cos(total_angle);
// 输出结果,保留足够的精度
printf("%.10f %.10f\n", x, y);
}
return 0;
}
最终结果,成功拿到满分
做题感悟
目前CSP第二题求解时,如果纯按照题目求解,一般只能有70-80%的样例数据能通过,剩余的数据规模都很大,如果不进行时间或空间的优化,就会导致超时而拿不到满分,希望以后能在做题时,根据题目就产生一些去使用优化算法的直觉,从而拿到满分。