- 博客(7)
- 收藏
- 关注
原创 机器学习——支持向量机(SVM)
1.1 支持向量机支持向量机(Support Vector Machine,SVM)是一种用于分类和回归分析的监督学习模型。它的基本原理是找到一个最佳的超平面,将不同类别的数据点分开,并且使得超平面到最近的数据点的距离(即间隔)最大化。在分类问题中,SVM试图找到一个能够将训练数据集中的样本划分成不同类别的超平面;在回归问题中,SVM试图找到一个能够拟合数据并且尽可能地使数据点落在拟合曲线附近的超平面。
2024-06-11 15:25:42 898 1
原创 机器学习————逻辑(logistic)回归
在当今数据驱动的时代,机器学习技术已经渗透到我们生活的方方面面,从在线购物推荐、社交媒体内容过滤,到医疗诊断、金融风险评估,无不体现着机器学习的强大力量。在这些应用场景中,分类问题尤为常见,如判断邮件是否为垃圾邮件、预测用户是否会点击某个广告等。逻辑回归(Logistic Regression)作为一种经典的分类算法,因其简单高效、易于实现和解释性强等特点,在机器学习领域占据了重要地位。逻辑回归,尽管名字中带有“回归”二字,但实际上它是一种用于解决二分类问题的统计学习方法。
2024-05-28 16:15:55 738
原创 机器学习——朴素贝叶斯
1.基本原理:朴素贝叶斯分类器基于贝叶斯定理,利用已知的数据来进行分类预测。贝叶斯定理描述了在给定先验概率的情况下,如何根据新的证据来更新我们对某个事件发生概率的信念。2.朴素假设:朴素贝叶斯算法中最重要的假设是特征之间相互独立,即给定类别的情况下,特征之间是条件独立的。尽管这个假设在实际中很少成立,但在许多情况下,朴素贝叶斯仍然表现出良好的性能。3.分类决策:给定一个待分类的样本,朴素贝叶斯计算每个可能类别的后验概率。最终选择具有最高后验概率的类别作为预测结果。
2024-05-14 17:38:00 902 2
原创 机器学习--模型评估与ROC曲线
混淆矩阵(confusion matrix)是一个评估分类问题常用的工具,对于 k 元分类,其实它是一个k x k的表格,用来记录分类器的预测结果。例如对于常见的二分类,它的混淆矩阵是 2 x 2 的。在二分类中,可以将样本根据其真实结果和模型的预测结果的组合划分为真阳性(true positive,TP)、真阴性(true negative,TN)、假阳性(false positive,FP)、假阴性(false negative,FN)。
2024-04-16 16:22:32 1012
原创 anaconda安装
Aanconda是基于conda的Python数据科学和机器学习开发平台包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换总之,安装anaconda可以便于机器学习和数据分析。而且也不必再安装python,比较方便。(通常情况下,不建议安装多个python的情况下再次安装Anaconda,容易导致版本混乱)
2024-03-18 21:28:32 628 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人