题目描述
有一个 n×m 的棋盘,在某个点 (x,y) 上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步。
输入格式
输入只有一行四个整数,分别为 n,m,x,y。
输出格式
一个 n×m 的矩阵,代表马到达某个点最少要走几步(不能到达则输出 −1−1)。
输入输出样例
输入 #1
3 3 1 1
输出 #1
0 3 2 3 -1 1 2 1 4
数据规模与约定
对于全部的测试点,保证 1≤x≤n≤400,1≤y≤m≤400。
题解思路
首先补充一点:象棋中马走日,也就是说每次走一个“日”字,如图所示,马如果初始在(x, y)处,则他有八个点可以走
好了,理解了马是怎么走的之后,我们可以开始搜索了,最好想到的其实是深搜dfs去遍历马到每个地方选取最小值,然后输出结果即可,在深搜的过程中一个关键就是如何表示马即将去的地方呢?就是一个技巧:方向数组
const int dir[8][2] = {
{1, 2}, {1, -2}, {-1, 2}, {-1, -2},
{2, 1}, {2, -1}, {-2, 1}, {-2, -1}
};
这样这个二维数组中就存储了马当前位置能到达的所有位移偏移量,因此我们只需要用一个循环去表示每一个偏移量dx和dy即可。
还有一个问题需要解决,就是我们如何输出结果呢?我们可以用一个n * m的矩阵来记录所有的结果,由于有些点可能到不了,题目要求到不了的都输出-1,我们就可以把这个矩阵先全部初始化为-1,这样没标记过的自然就是-1啦~。
好的,接下来我们就是开始深搜的过程了,直接来看代码即可:
题解代码:
超时代码:
#include<bits/stdc++.h>
using namespace std;
//定义方向数组
const int dir[8][2] = {
{1, 2}, {-1, 2}, {1, -2}, {-1, -2},
{2, -1}, {-2, 1}, {2, 1}, {-2, -1}
};
const int MAXN = 4e2 + 50;
//记录结果的矩阵
int board[MAXN][MAXN];
//判断此位置是否来过的vis数组
bool vis[MAXN][MAXN];
int n, m, x, y;
//开始深搜
void dfs(int step, int i, int j) {
//这个点来过而且之前的步长不大于当前步长,直接返回即可(不需要继续搜索了)
if (vis[i][j] && board[i][j] <= step) return ;
//标记两个数组
vis[i][j] = true, board[i][j] = step;
//遍历枚举所有在当前点能扩展到的点
for (int k = 0; k < 8; k++) {
int dx = i + dir[k][0], dy = j + dir[k][1];
//除去越界情况
if (dx < 1 || dy < 1 || dx > n || dy > m) continue;
//继续深搜,步长 + 1
dfs(step + 1, dx, dy);
}
return ;
}
int main(){
cin >> n >> m >> x >> y;
//结果数组初始化成-1
memset(board, -1, sizeof board);
dfs(0, x, y);//开始深搜,初始步长为0,位置为(x, y)
//遍历输出结果
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (j - 1) cout << " ";
cout << board[i][j];
}
cout << endl;
}
return 0;
}
这样我们直接提交:
超时啦(玩毛,白讲),深搜不行怎么办,明明已经剪枝优化了呀,难道是时空发生了扭曲,洛谷开始了偏心?(说出来我都不信┭┮﹏┭┮),哦哦哦哦哦,这个题是求最短步长,那么我们直接用bfs即可啊,
类似的思路,我们改成广搜去确定最短步长:
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
//定义一个Node结构体,里面包含当前点的横坐标x,纵坐标y,以及最短步长step
struct Node {
//初始化函数
Node(int s, int x, int y) : step(s), x(x), y(y) {}
int step, x, y;
};
const int dir[8][2] = {
{1, 2}, {1, -2}, {-1, 2}, {-1, -2},
{2, 1}, {2, -1}, {-2, 1}, {-2, -1}
};
const int MAXN = 4e2 + 10;
int board[MAXN][MAXN];
int n, m, x, y;
void bfs(int step, int i, int j) {
//用一个队列去模拟广搜
queue<Node> q;
q.push(Node(step, i, j));
board[i][j] = step;
//只要队列不空,我们就一直搜索扩展
while (!q.empty()) {
//取出队首元素,然后弹出
Node node = q.front(); q.pop();
//列出前一个队首元素node的数据
int a = node.x, b = node.y, s = node.step;
//遍历扩展节点
for (int k = 0; k < 8; k++) {
int dx = a + dir[k][0], dy = b + dir[k][1];
//越界情况需要丢掉
if (dx < 1 || dy < 1 || dx > n || dy > m) continue;
//之前来过的也不再考虑
if (board[dx][dy] != -1) continue;
//符合条件直接入队
q.push(Node(s + 1, dx, dy));
//标记结果数组
board[dx][dy] = s + 1;
}
}
return ;
}
int main() {
cin >> n >> m >> x >> y;
memset(board, -1, sizeof board);
bfs(0, x, y);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (j > 1) cout << " ";
cout << board[i][j];
}
cout << endl;
}
return 0;
}
可以看到用广搜的方法就直接过啦。
总结
由这个题我们也可以知道,一般求最短步长这样的问题还是交给广搜吧,这样方便又安全~