【数字图像处理——第三章:空间域图像增强(1)】

本文探讨了空间域图像增强的方法,包括点运算(如灰度变换和直方图均衡)、邻域处理(如平滑和锐化)、彩色增强以及频率域处理(如低通和高通滤波)。重点介绍了如何通过代数运算(如加、减、乘)处理图像,以提高清晰度、去除噪声和实现特定视觉效果。
摘要由CSDN通过智能技术生成
空间域图像增强

图像增强

什么是图像增强

  • 图像增强 是要突出图像中的某些信息,同时削弱或去除某些不需要信息的一种处理方法,以得到对具体应用来说视角效果更“好”,或更”有用“的图像的技术。

为什么要增强图像

  • 图像在传输或者处理过程中会引入噪声或使图像变模糊,从而降低了图像质量,甚至淹没了特征,给分析带来了困难。

目的

  1. 改善图像视觉效果,提高清晰度;
  2. 改善(增强)感兴趣部分(如滤除噪声、锐化目标物边缘),以提高图像可懂度。

方法

  1. 空间域处理
    • 点处理(灰度变换、直方图均衡等);
    • 邻域处理(平滑和锐化等);
    • 彩色增强(伪/假/真彩色增强)
  2. 频率域处理
    • 低通滤波、
    • 高通锐化、
    • 同态增析等

注意

  1. 图像信息有损无增;
  2. 图像增强一般是一个复杂图像处理系统的主要的“预处理”环节。

分类

  1. 空间域增强:对图像的像素直接处理; g ( x , y ) = T [ f ( x , y ) ] g(x,y) = T[f(x,y)] g(x,y)=T[f(x,y)]
    • f(x,y)是原图像;g(x,y)是处理后的图像
    • T是作用于f的操作,定义在(x,y)的邻域
  2. 频率域增强:修改图像的傅立叶变换
点运算

g ( x , y ) = s = T [ f ( x , y ) ] = T [ r ] g(x,y)=s=T[f(x,y)]=T[r] g(x,y)=s=T[f(x,y)]=T[r]

  • r,s分别是f(x,y)和g(x,y)在点(x,y)的灰度级

T的三种基本类型

  1. 线性(正比、反比); 图像反转: s = L − 1 − r s=L-1-r s=L1r
  2. 对数(对数、反对数); 对数变换: s = c l o g ( 1 + r ) s=clog(1+r) s=clog(1+r)
  3. 幂次(n次幂和n次方根);幂次变换: s = c r n s=cr^n s=crn
  • 反转变换: s = ( L − 1 ) − r s=(L-1)-r s=(L1)r

[0,L-1]为图像的灰度级。作用:黑的变白,白的变黑。

  • 对数变换: s = c l o g ( 1 + r ) s=clog(1+r) s=clog(1+r)

c是常数;

有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失;

解决办法是对原图进行灰度压缩,如对数变换。

  • 幂次变换: s = c r n s=cr^n s=crn

c、n是正常数;

n<1提高灰度级,在正比函数上方,使图像变量;

n>1降低灰度级,在正比函数下方,使图像变暗。

对比度拉伸

提高图像处理时灰度级的动态范围;

图像二值化

灰度级切片

  • 关心范围指定较高值,其他指定较低值

特点:突出目标轮廓,消除背景细节

  • 关心范围指定较高值,其它保持不变

特点:突出目标轮廓,保留背景细节

位平面切片

假设图像中每个像素的灰度级是 256 ,这可以用8位来表示。

图像是由8个1位平面组成,范围从位平面0到位平面7。

其中,位平面0包含图像中像素的最低位,位平面7包含像素的最高位。

把数字图像分解成为位平面,每一个位平面可以处理为一幅二值图像。

  • 通过对特定位提高亮度,改善图像质量
  • 较高位(如前4位)包含大多数视觉重要数据
  • 较低位(如后4位)对图像中的微小细节有作用
  • 分解为位平面,可以分析每一位在图像中的相对重要性
代数运算
  • 算术运算:加、减、乘
  • 逻辑运算:非、与、或、异或

加法运算的定义
C ( x , y ) = A ( x , y ) + B ( x , y ) C(x,y)=A(x,y)+B(x,y) C(x,y)=A(x,y)+B(x,y)
举例:

  • 去除叠加性噪声:

对于原图像f(x,y),有一个噪声图像集 { g i ( x , y ) } , i = 1 , 2 , . . . , N \{g_i(x,y)\},i=1,2,...,N {gi(x,y)},i=1,2,...,N

其中: g i ( x , y ) = f ( x , y ) + h i ( x , y ) g_i(x,y)=f(x,y)+h_i(x,y) gi(x,y)=f(x,y)+hi(x,y);假设噪声 h i ( x , y ) h_i(x,y) hi(x,y)均值为0,且互不相关,

N个图像的均值定义为:
g ( x , y ) = ( 1 / N ) ∗ ( g 0 ( x , y ) + g 1 ( x , y ) + . . . + g N ( x , y ) ) g(x,y)=(1/N)*(g_0(x,y)+g_1(x,y)+...+g_N(x,y)) g(x,y)=(1/N)(g0(x,y)+g1(x,y)+...+gN(x,y))
期望值: E ( g ( x , y ) ) = f ( x , y ) E(g(x,y))=f(x,y) E(g(x,y))=f(x,y)

  • 生成图像叠加性效果:

对于两个图像f(x,y)和h(x,y)的均值有:
g ( x , y ) = ( 1 / 2 ) f ( x , y ) + ( 1 / 2 ) h ( x , y ) g(x,y)=(1/2)f(x,y)+(1/2)h(x,y) g(x,y)=(1/2)f(x,y)+(1/2)h(x,y)
推广这个公式为:
g ( x , y ) = a f ( x , y ) + b h ( x , y ) g(x,y)=af(x,y)+bh(x,y) g(x,y)=af(x,y)+bh(x,y
其中a+b=1。

减法的定义
C ( x , y ) = A ( x , y ) − B ( x , y ) C(x,y)=A(x,y)-B(x,y) C(x,y)=A(x,y)B(x,y)
举例:

  1. 显示两幅图像的差异,检测同一场景两幅图像之间的变化, 如:视频中镜头边界的检测
  2. 去除不需要的叠加性图案
  3. 图像分割:如分割运动的车辆,减法去掉静止部分,剩余的是运动元素和噪声

乘法的定义
g ( x , y ) = f ( x , y ) ∗ h ( x , y ) g(x,y)=f(x,y)*h(x,y) g(x,y)=f(x,y)h(x,y)
举例:

  1. 图像的局部显示(用二值模版图像与原图像做乘法)

注意:在matlab中要用点乘运算。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值