目录
392.判断子序列
简单
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
进阶:
如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?
致谢:
特别感谢 @pbrother 添加此问题并且创建所有测试用例。
示例 1:
输入:s = "abc", t = "ahbgdc" 输出:true
示例 2:
输入:s = "axc", t = "ahbgdc" 输出:false
提示:
0 <= s.length <= 100
0 <= t.length <= 10^4
- 两个字符串都只由小写字符组成。
动态规划五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
确定递推公式
在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
if (s[i - 1] == t[j - 1])
t中找到了一个字符在s中也出现了
if (s[i - 1] != t[j - 1])
相当于t要删除元素,继续匹配
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)
if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
其实这里 大家可以发现和 1143.最长公共子序列 (opens new window)的递推公式基本那就是一样的,区别就是 本题 如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。
dp数组如何初始化
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:
如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。
dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
确定遍历顺序
同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右
如图所示:
举例推导dp数组
以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:
dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。
图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。
class Solution {
public boolean isSubsequence(String s, String t) {
// 创建一个二维数组来存储匹配的字符数量
// dp[i][j] 表示 s[0..i-1] 和 t[0..j-1] 中匹配的字符数量
int[][] dp = new int[s.length() + 1][t.length() + 1];
// 遍历 s 和 t 中的每个字符
for(int i = 1; i <= s.length(); i++){
for(int j = 1; j <= t.length(); j++){
// 如果字符匹配,将 dp[i-1][j-1] 的值加 1 存入 dp[i][j]
if(s.charAt(i - 1) == t.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
// 如果字符不匹配,将 dp[i][j-1] 的值存入 dp[i][j]
dp[i][j] = dp[i][j - 1];
}
}
}
// 如果 dp[s.length()][t.length()] 的值等于 s.length(),则 s 是 t 的子序列
if(dp[s.length()][t.length()] == s.length()){
return true;
}
return false;
}
}
115.不同的子序列
困难
给你两个字符串 s
和 t
,统计并返回在 s
的 子序列 中 t
出现的个数,结果需要对 109 + 7 取模。
示例 1:
输入:s = "rabbbit", t = "rabbit"输出
:3
解释: 如下所示, 有 3 种可以从 s 中得到"rabbit" 的方案
。rabbbit
rabbbit
rabbbit
示例 2:
输入:s = "babgbag", t = "bag"输出
:5
解释: 如下所示, 有 5 种可以从 s 中得到"bag" 的方案
。babgbag
babgbag
babgbag
babgbag
babgbag
提示:
1 <= s.length, t.length <= 1000
s
和t
由英文字母组成
动规五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
为什么i-1,j-1 这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。
确定递推公式
这一类问题,基本是要分析两种情况
s[i - 1] 与 t[j - 1]相等
s[i - 1] 与 t[j - 1] 不相等
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。
这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。
dp数组如何初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。
每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。
dp[i][0]表示什么呢?
dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
那么dp[0][j]一定都是0,s如论如何也变成不了t。
最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。
dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
初始化分析完毕,代码如下:
vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
确定遍历顺序
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
代码如下:
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
举例推导dp数组
以s:"baegg",t:"bag"为例,推导dp数组状态如下:
如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。
class Solution {
public int numDistinct(String s, String t) {
// 创建一个二维数组来存储不同子序列的数量
// dp[i][j] 表示 s[0..i-1] 和 t[0..j-1] 的不同子序列数量
int[][] dp = new int[s.length() + 1][t.length() + 1];
// 基本情况:对于任何字符串 s,形成空字符串的方法恰好一种。
// 因此,对所有 i,初始化 dp[i][0] 为 1。
for (int i = 0; i < s.length() + 1; i++) {
dp[i][0] = 1;
}
// 遍历 s 和 t 中的每个字符
for(int i = 1; i <= s.length(); i++){
for(int j = 1; j <= t.length(); j++){
// 如果字符匹配,有两种选择:
// 1. 将当前字符包含在 s 和 t 中。因此,将 dp[i-1][j-1] 加到 dp[i][j]。
// 2. 从 s 中排除当前字符,但保留 t 不变。因此,将 dp[i-1][j] 加到 dp[i][j]。
if(s.charAt(i - 1) == t.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
// 如果字符不匹配,我们只能排除 s 中的当前字符。
// 因此,将 dp[i-1][j] 加到 dp[i][j]。
dp[i][j] = dp[i - 1][j];
}
}
}
// 返回 s 和 t 的不同子序列数量
return dp[s.length()][t.length()];
}
}
583.两个字符串
中等
给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = "sea", word2 = "eat" 输出: 2 解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
示例 2:
输入:word1 = "leetcode", word2 = "etco" 输出:4
提示:
1 <= word1.length, word2.length <= 500
word1
和word2
只包含小写英文字母
这道题可以转变思路,找出两个字符串的最大公共子序列,然后通过长度找出删除元素的最小个数 ,变成求最大公共子序列的问题
代码随想录 动态规划-子序列问题-子序列(不连续)-CSDN博客
class Solution {
public int minDistance(String word1, String word2) {
// 创建一个二维数组来存储最长公共子序列的长度
// dp[i][j] 表示 word1[0..i-1] 和 word2[0..j-1] 的最长公共子序列长度
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
// 遍历 word1 和 word2 中的每个字符
for(int i = 1; i <= word1.length(); i++){
for(int j = 1; j <= word2.length(); j++){
// 如果字符相等,将 dp[i-1][j-1] 的值加 1 存入 dp[i][j]
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
// 如果字符不相等,将 dp[i-1][j] 和 dp[i][j-1] 中的较大值存入 dp[i][j]
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
// 最终返回 word1 和 word2 的长度减去它们的最长公共子序列的长度的两倍
return word1.length() + word2.length() - 2 * dp[word1.length()][word2.length()];
}
}
直接求解删除的步数
这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:
确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
这里dp数组的定义有点点绕,大家要撸清思路。
确定递推公式
当word1[i - 1] 与 word2[j - 1]相同的时候
当word1[i - 1] 与 word2[j - 1]不相同的时候
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
dp数组如何初始化
从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
dp[0][j]的话同理,所以代码如下:
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
确定遍历顺序
从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
举例推导dp数组
以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:
class Solution {
public int minDistance(String word1, String word2) {
// 创建一个二维数组来存储编辑距离
// dp[i][j] 表示将 word1[0..i-1] 转换为 word2[0..j-1] 所需的最小操作次数
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
// 初始化第一行和第一列
// dp[i][0] 表示将 word1 的前 i 个字符转换为一个空字符串所需的操作次数,即删除操作
for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
// dp[0][j] 表示将空字符串转换为 word2 的前 j 个字符所需的操作次数,即插入操作
for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
// 遍历 word1 和 word2 中的每个字符
for (int i = 1; i < word1.length() + 1; i++) {
for (int j = 1; j < word2.length() + 1; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
// 如果当前字符相等,无需操作,保持相等
dp[i][j] = dp[i - 1][j - 1];
} else {
// 如果当前字符不相等,考虑三种操作的最小值:
// 1. 替换操作:将 word1[i-1] 替换为 word2[j-1],需要消耗 2 步(删除 + 插入)
// 2. 删除操作:删除 word1[i-1],需要消耗 1 步
// 3. 插入操作:在 word1[i-1] 后插入 word2[j-1],需要消耗 1 步
dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,
Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
}
}
}
// 返回将 word1 转换为 word2 所需的最小操作次数
return dp[word1.length()][word2.length()];
}
}
72.编辑距离
中等
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和word2
由小写英文字母组成
class Solution {
public int minDistance(String word1, String word2) {
// 创建一个二维数组来存储编辑距离
// dp[i][j] 表示将 word1[0..i-1] 转换为 word2[0..j-1] 所需的最小操作次数
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
// 初始化第一行和第一列
// dp[i][0] 表示将 word1 的前 i 个字符转换为一个空字符串所需的操作次数,即删除操作
for(int i = 0; i <= word1.length(); i++){
dp[i][0] = i;
}
// dp[0][j] 表示将空字符串转换为 word2 的前 j 个字符所需的操作次数,即插入操作
for(int j = 0; j <= word2.length(); j++){
dp[0][j] = j;
}
// 遍历 word1 和 word2 中的每个字符
for(int i = 1; i <= word1.length(); i++){
for(int j = 1; j <= word2.length(); j++){
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
// 如果当前字符相等,无需操作,保持相等
dp[i][j] = dp[i - 1][j - 1];
} else {
// 如果当前字符不相等,考虑三种操作的最小值:
// 1. 替换操作:将 word1[i-1] 替换为 word2[j-1],需要消耗 1 步
// 2. 删除操作:删除 word1[i-1],需要消耗 1 步
// 3. 插入操作:在 word1[i-1] 后插入 word2[j-1],需要消耗 1 步
dp[i][j] = Math.min(dp[i - 1][j] + 1, Math.min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1));
}
}
}
// 返回将 word1 转换为 word2 所需的最小操作次数
return dp[word1.length()][word2.length()];
}
}