代码随想录 动态规划-子序列问题-编辑距离

目录

392.判断子序列

115.不同的子序列

583.两个字符串

72.编辑距离


392.判断子序列

392. 判断子序列

简单

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢 @pbrother 添加此问题并且创建所有测试用例。

示例 1:

输入:s = "abc", t = "ahbgdc"
输出:true

示例 2:

输入:s = "axc", t = "ahbgdc"
输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4
  • 两个字符串都只由小写字符组成。

动态规划五部曲分析如下:

确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

if (s[i - 1] == t[j - 1])

t中找到了一个字符在s中也出现了

if (s[i - 1] != t[j - 1])

相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

其实这里 大家可以发现和 1143.最长公共子序列 (opens new window)的递推公式基本那就是一样的,区别就是 本题 如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。

dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

392.判断子序列

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

确定遍历顺序

同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

如图所示:

392.判断子序列1

举例推导dp数组

以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:

392.判断子序列2

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。

class Solution {
    public boolean isSubsequence(String s, String t) {
        // 创建一个二维数组来存储匹配的字符数量
        // dp[i][j] 表示 s[0..i-1] 和 t[0..j-1] 中匹配的字符数量
        int[][] dp = new int[s.length() + 1][t.length() + 1];
        
        // 遍历 s 和 t 中的每个字符
        for(int i = 1; i <= s.length(); i++){
            for(int j = 1; j <= t.length(); j++){
                // 如果字符匹配,将 dp[i-1][j-1] 的值加 1 存入 dp[i][j]
                if(s.charAt(i - 1) == t.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 如果字符不匹配,将 dp[i][j-1] 的值存入 dp[i][j]
                    dp[i][j] = dp[i][j - 1];
                }
            }
        }
        
        // 如果 dp[s.length()][t.length()] 的值等于 s.length(),则 s 是 t 的子序列
        if(dp[s.length()][t.length()] == s.length()){
            return true;
        }
        return false;
    }
}

115.不同的子序列

115. 不同的子序列

困难

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例 1:

输入:s = "rabbbit", t = "rabbit"
输出3
解释:
如下所示, 有 3 种可以从 s 中得到 "rabbit" 的方案rabbbit
rabbbit
rabbbit

示例 2:

输入:s = "babgbag", t = "bag"
输出5
解释:
如下所示, 有 5 种可以从 s 中得到 "bag" 的方案babgbag
babgbag
babgbag
babgbag
babgbag

提示:

  • 1 <= s.length, t.length <= 1000
  • s 和 t 由英文字母组成

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

为什么i-1,j-1 这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

确定递推公式

这一类问题,基本是要分析两种情况

s[i - 1] 与 t[j - 1]相等

s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。

这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。

dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

初始化分析完毕,代码如下:

vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。

确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

代码如下:

for (int i = 1; i <= s.size(); i++) {
    for (int j = 1; j <= t.size(); j++) {
        if (s[i - 1] == t[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        } else {
            dp[i][j] = dp[i - 1][j];
        }
    }
}

举例推导dp数组

以s:"baegg",t:"bag"为例,推导dp数组状态如下:

115.不同的子序列

如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。

 

class Solution {
    public int numDistinct(String s, String t) {
        // 创建一个二维数组来存储不同子序列的数量
        // dp[i][j] 表示 s[0..i-1] 和 t[0..j-1] 的不同子序列数量
        int[][] dp = new int[s.length() + 1][t.length() + 1];
        
        // 基本情况:对于任何字符串 s,形成空字符串的方法恰好一种。
        // 因此,对所有 i,初始化 dp[i][0] 为 1。
        for (int i = 0; i < s.length() + 1; i++) {
            dp[i][0] = 1;
        }
        
        // 遍历 s 和 t 中的每个字符
        for(int i = 1; i <= s.length(); i++){
            for(int j = 1; j <= t.length(); j++){
                // 如果字符匹配,有两种选择:
                // 1. 将当前字符包含在 s 和 t 中。因此,将 dp[i-1][j-1] 加到 dp[i][j]。
                // 2. 从 s 中排除当前字符,但保留 t 不变。因此,将 dp[i-1][j] 加到 dp[i][j]。
                if(s.charAt(i - 1) == t.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    // 如果字符不匹配,我们只能排除 s 中的当前字符。
                    // 因此,将 dp[i-1][j] 加到 dp[i][j]。
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        
        // 返回 s 和 t 的不同子序列数量
        return dp[s.length()][t.length()];
    }
}

583.两个字符串

583. 两个字符串的删除操作

中等

给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

每步 可以删除任意一个字符串中的一个字符。

示例 1:

输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"

示例  2:

输入:word1 = "leetcode", word2 = "etco"
输出:4

提示:

  • 1 <= word1.length, word2.length <= 500
  • word1 和 word2 只包含小写英文字母

这道题可以转变思路,找出两个字符串的最大公共子序列,然后通过长度找出删除元素的最小个数 ,变成求最大公共子序列的问题

代码随想录 动态规划-子序列问题-子序列(不连续)-CSDN博客 

class Solution {
    public int minDistance(String word1, String word2) {
        // 创建一个二维数组来存储最长公共子序列的长度
        // dp[i][j] 表示 word1[0..i-1] 和 word2[0..j-1] 的最长公共子序列长度
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        
        // 遍历 word1 和 word2 中的每个字符
        for(int i = 1; i <= word1.length(); i++){
            for(int j = 1; j <= word2.length(); j++){
                // 如果字符相等,将 dp[i-1][j-1] 的值加 1 存入 dp[i][j]
                if(word1.charAt(i - 1) == word2.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 如果字符不相等,将 dp[i-1][j] 和 dp[i][j-1] 中的较大值存入 dp[i][j]
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        
        // 最终返回 word1 和 word2 的长度减去它们的最长公共子序列的长度的两倍
        return word1.length() + word2.length() - 2 * dp[word1.length()][word2.length()];
    }
}

直接求解删除的步数

这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:

确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

确定递推公式

当word1[i - 1] 与 word2[j - 1]相同的时候

当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

dp[0][j]的话同理,所以代码如下:

vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

583.两个字符串的删除操作1

class Solution {
    public int minDistance(String word1, String word2) {
        // 创建一个二维数组来存储编辑距离
        // dp[i][j] 表示将 word1[0..i-1] 转换为 word2[0..j-1] 所需的最小操作次数
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        
        // 初始化第一行和第一列
        // dp[i][0] 表示将 word1 的前 i 个字符转换为一个空字符串所需的操作次数,即删除操作
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        // dp[0][j] 表示将空字符串转换为 word2 的前 j 个字符所需的操作次数,即插入操作
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
        
        // 遍历 word1 和 word2 中的每个字符
        for (int i = 1; i < word1.length() + 1; i++) {
            for (int j = 1; j < word2.length() + 1; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    // 如果当前字符相等,无需操作,保持相等
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    // 如果当前字符不相等,考虑三种操作的最小值:
                    // 1. 替换操作:将 word1[i-1] 替换为 word2[j-1],需要消耗 2 步(删除 + 插入)
                    // 2. 删除操作:删除 word1[i-1],需要消耗 1 步
                    // 3. 插入操作:在 word1[i-1] 后插入 word2[j-1],需要消耗 1 步
                    dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,
                                        Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
                }
            }
        }
        
        // 返回将 word1 转换为 word2 所需的最小操作次数
        return dp[word1.length()][word2.length()];
    }
}

72.编辑距离

72. 编辑距离

中等

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成
class Solution {
    public int minDistance(String word1, String word2) {
        // 创建一个二维数组来存储编辑距离
        // dp[i][j] 表示将 word1[0..i-1] 转换为 word2[0..j-1] 所需的最小操作次数
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        
        // 初始化第一行和第一列
        // dp[i][0] 表示将 word1 的前 i 个字符转换为一个空字符串所需的操作次数,即删除操作
        for(int i = 0; i <= word1.length(); i++){
            dp[i][0] = i; 
        }
        // dp[0][j] 表示将空字符串转换为 word2 的前 j 个字符所需的操作次数,即插入操作
        for(int j = 0; j <= word2.length(); j++){
            dp[0][j] = j;
        }
        
        // 遍历 word1 和 word2 中的每个字符
        for(int i = 1; i <= word1.length(); i++){
            for(int j = 1; j <= word2.length(); j++){
                if(word1.charAt(i - 1) == word2.charAt(j - 1)){
                    // 如果当前字符相等,无需操作,保持相等
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    // 如果当前字符不相等,考虑三种操作的最小值:
                    // 1. 替换操作:将 word1[i-1] 替换为 word2[j-1],需要消耗 1 步
                    // 2. 删除操作:删除 word1[i-1],需要消耗 1 步
                    // 3. 插入操作:在 word1[i-1] 后插入 word2[j-1],需要消耗 1 步
                    dp[i][j] = Math.min(dp[i - 1][j] + 1, Math.min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1));
                }
            }
        }
        
        // 返回将 word1 转换为 word2 所需的最小操作次数
        return dp[word1.length()][word2.length()];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值