【大数据】Hadoop_MapReduce(三)

MapReduce内核源码解析

1. MapTask 工作机制

在这里插入图片描述

  • Read 阶段:MapTask 通过 InputFormat 获得的 RecordReader,从输入 InputSplit 中解析出一个个 key/value。
  • Map 阶段:该节点主要是将解析出的 key/value 交给用户编写 map()函数处理,并产生一系列新的 key/value。
  • Collect 收集阶段:在用户编写 map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的 key/value 分区(调用Partitioner),并写入一个环形内存缓冲区中。
  • Spill 阶段:即“溢写”,当环形缓冲区满后,MapReduce 会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:

  1. 利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition 进行排序,然后按照 key 进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照 key 有序。
  2. 按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件 output/spillN.out(N 表示当前溢写次数)中。如果用户设置了 Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
  3. 将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过 1MB,则将内存索引写到文件
    output/spillN.out.index 中。
  • Merge 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件output/file.out 中,同时生成相应的索引文件 output/file.out.index。
在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并 mapreduce.task.io.sort.factor(默认 10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

2. ReduceTask 工作机制

在这里插入图片描述

  • Copy 阶段:ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
  • Sort 阶段:在远程拷贝数据的同时,ReduceTask 启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照 MapReduce 语义,用户编写 reduce()函数输入数据是按 key 进行聚集的一组数据。为了将 key 相同的数据聚在一起,Hadoop 采用了基于排序的策略。由于各个 MapTask 已经实现对自己的处理结果进行了局部排序,因此,ReduceTask 只需对所有数据进行一次归并排序即可。
  • Reduce 阶段:reduce()函数将计算结果写到 HDFS 上。

3. ReduceTask 并行度决定机制

MapTask的并行度由切片个数决定,切片个数由输入文件和切片规则决定。

ReduceTask的并行度同样影响整个 job 的执行并发度和效率,但与MapTask的并发数不同,ReduceTask数量可以直接手工设置:

// 设置ReduceTask的个数,默认值是1
 job.setNumReduceTasks(4);

注意:

  1. ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map个数一致。
  2. ReduceTask默认值就是1,所以输出文件个数为一个。
  3. 如果数据分布不均匀,就有可能在Reduce阶段产生数据倾斜
  4. ReduceTask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个ReduceTask。
  5. 具体多少个ReduceTask,需要根据集群性能而定。
  6. 如果分区数不是1,但是ReduceTask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。

Join应用

1. Reduce Join

Map 端的主要工作:为来自不同表或文件的 key/value 对,打标签以区别不同来源的记录。然后用连接字段作为 key,其余部分和新加的标志作为 value,最后进行输出。

Reduce 端的主要工作:在 Reduce 端以连接字段作为 key 的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在 Map 阶段已经打标志)分开,最后进行合并就 ok 了。

案例实操:

需求:通过将关联条件作为 Map 输出的 key,将两表满足 Join 条件的数据并携带数据所来源的文件信息,发往同一个 ReduceTask,在 Reduce 中进行数据的串联。

在这里插入图片描述

代码实现
(1)创建商品和订单合并后的 TableBean 类

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class TableBean implements Writable {
 	private String id; //订单 id
 	private String pid; //产品 id
 	private int amount; //产品数量
	private String pname; //产品名称
 	private String flag; //判断是 order 表还是 pd 表的标志字段
	
	public TableBean() {
 	}
 
	public String getId() {
 		return id;
 	}
 	
	public void setId(String id) {
 		this.id = id;
 	}
 
	public String getPid() {
 		return pid;
 	}
 
	public void setPid(String pid) {
 		this.pid = pid;
 	}
 
	public int getAmount() {
 		return amount;
 	}
 	
	public void setAmount(int amount) {
 		this.amount = amount;
 	}
 
	public String getPname() {
 		return pname;
 	}
 
	public void setPname(String pname) {
 		this.pname = pname;
 	}
 	public String getFlag() {
 		return flag;
 	}
 	
	public void setFlag(String flag) {
		this.flag = flag;
 	}

	@Override
 	public String toString() {
 		return id + "\t" + pname + "\t" + amount;
 	}
 	@Override
 	public void write(DataOutput out) throws IOException {
 		out.writeUTF(id);
 		out.writeUTF(pid);
 		out.writeInt(amount);
		out.writeUTF(pname);
 		out.writeUTF(flag);
 	}
 
	@Override
 	public void readFields(DataInput in) throws IOException {
		this.id = in.readUTF();
 		this.pid = in.readUTF();
 		this.amount = in.readInt();
 		this.pname = in.readUTF();
 		this.flag = in.readUTF();
 	}
} 

(2)编写 TableMapper 类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.IOException;

public class TableMapper extends Mapper<LongWritable,Text,Text,TableBean> 
{
 	private String filename;
 	private Text outK = new Text();
 	private TableBean outV = new TableBean();
	
	@Override
 	protected void setup(Context context) throws IOException, InterruptedException {
 		//获取对应文件名称
 		InputSplit split = context.getInputSplit();
 		FileSplit fileSplit = (FileSplit) split;
 		filename = fileSplit.getPath().getName();
 	}
 
	@Override
 	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
 		//获取一行
 		String line = value.toString();
 		
		//判断是哪个文件,然后针对文件进行不同的操作
 		if(filename.contains("order")){ //订单表的处理
 			String[] split = line.split("\t");
 			//封装 outK
 			outK.set(split[1]);
 			//封装 outV
 			outV.setId(split[0]);
 			outV.setPid(split[1]);
 			outV.setAmount(Integer.parseInt(split[2]));
 			outV.setPname("");
 			outV.setFlag("order");
 		}else { //商品表的处理
 			String[] split = line.split("\t");
 			//封装 outK
 			outK.set(split[0]);
 			//封装 outV
 			outV.setId("");
 			outV.setPid(split[0]);
 			outV.setAmount(0);
 			outV.setPname(split[1]);
			outV.setFlag("pd");
 		}
 		//写出 KV
 		context.write(outK,outV);
 	}
} 

(3)编写 TableReducer 类

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;

public class TableReducer extends Reducer<Text,TableBean,TableBean, NullWritable> {
 
	@Override
 	protected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException {
 		ArrayList<TableBean> orderBeans = new ArrayList<>();
 		TableBean pdBean = new TableBean();
 		
		for (TableBean value : values) {
 			
			//判断数据来自哪个表
 			if("order".equals(value.getFlag())){ //订单表
 				//创建一个临时 TableBean 对象接收 value
 				TableBean tmpOrderBean = new TableBean();
 				try {
 					BeanUtils.copyProperties(tmpOrderBean,value);
 				} catch (IllegalAccessException e) {
 					e.printStackTrace();
 				} catch (InvocationTargetException e) {
 					e.printStackTrace();
 				}
 				
				//将临时 TableBean 对象添加到集合 orderBeans
 				orderBeans.add(tmpOrderBean);
 			}else { //商品表
 				try {
 					BeanUtils.copyProperties(pdBean,value);
 				} catch (IllegalAccessException e) {
 					e.printStackTrace();
 				} catch (InvocationTargetException e) {
 					e.printStackTrace();
 				}
 			}
 		}
 		//遍历集合 orderBeans,替换掉每个 orderBean 的 pid 为 pname,然后写出
 		for (TableBean orderBean : orderBeans) {
			orderBean.setPname(pdBean.getPname());
		 	
			//写出修改后的 orderBean 对象
 			context.write(orderBean,NullWritable.get());
 		}
 	}
} 

(4)编写 TableDriver 类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class TableDriver {
 	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
 		Job job = Job.getInstance(new Configuration());
 		
		job.setJarByClass(TableDriver.class);
 		job.setMapperClass(TableMapper.class);
 		job.setReducerClass(TableReducer.class);
 
		job.setMapOutputKeyClass(Text.class);
 		job.setMapOutputValueClass(TableBean.class);
 
		job.setOutputKeyClass(TableBean.class);
 		job.setOutputValueClass(NullWritable.class);
 
		FileInputFormat.setInputPaths(job, new Path("D:\\input"));
 		FileOutputFormat.setOutputPath(job, new Path("D:\\output"));
 
		boolean b = job.waitForCompletion(true);
 		System.exit(b ? 0 : 1);
 	}
}

缺点: 这种方式中,合并的操作是在 Reduce 阶段完成,Reduce 端的处理压力太大,Map节点的运算负载则很低,资源利用率不高,且在 Reduce 阶段极易产生数据倾斜。
解决方案: Map 端实现数据合并。

2. Map Join

  • 使用场景:Map Join 适用于一张表十分小、一张表很大的场景。
  • 优点:在 Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数据的压力,尽可能的减少数据倾斜。
  • 具体办法:采用 DistributedCache
    在 Mapper 的 setup 阶段,将文件读取到缓存集合中。
    在 Driver 驱动类中加载缓存。
//缓存普通文件到 Task 运行节点。
job.addCacheFile(new URI("file:///e:/cache/pd.txt"));
//如果是集群运行,需要设置 HDFS 路径
job.addCacheFile(new URI("hdfs://hadoop102:8020/cache/pd.txt"));

案例实操:

需求:MapJoin 适用于关联表中有小表的情形。

在这里插入图片描述

(1)先在 MapJoinDriver 驱动类中添加缓存文件:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

public class MapJoinDriver {
 	public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {
 		// 获取 job 信息
 		Configuration conf = new Configuration();
 		Job job = Job.getInstance(conf);
 		// 设置加载 jar 包路径
 		job.setJarByClass(MapJoinDriver.class);
 		// 关联 mapper
 		job.setMapperClass(MapJoinMapper.class);
 		// 设置 Map 输出 KV 类
		job.setMapOutputKeyClass(Text.class);
	 	job.setMapOutputValueClass(NullWritable.class);
 		// 设置最终输出 KV 类型
 		job.setOutputKeyClass(Text.class);
 		job.setOutputValueClass(NullWritable.class);
 
		// 加载缓存数据
 		job.addCacheFile(new URI("file:///D:/input/tablecache/pd.txt"));
 		// Map 端 Join 的逻辑不需要 Reduce 阶段,设置 reduceTask 数量为 0
 		job.setNumReduceTasks(0);
 		
		// 设置输入输出路径
 		FileInputFormat.setInputPaths(job, new Path("D:\\input"));
 		FileOutputFormat.setOutputPath(job, new Path("D:\\output"));
 		// 提交
 		boolean b = job.waitForCompletion(true);
 		System.exit(b ? 0 : 1);
 	}
} 

(2)在 MapJoinMapper 类中的 setup 方法中读取缓存文件

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;

public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
 		private Map<String, String> pdMap = new HashMap<>();
 		private Text text = new Text();
 
		//任务开始前将 pd 数据缓存进 pdMap
 		@Override
 		protected void setup(Context context) throws IOException, InterruptedException {
 
		//通过缓存文件得到小表数据 pd.txt
 		URI[] cacheFiles = context.getCacheFiles();
 		Path path = new Path(cacheFiles[0]);
 
		//获取文件系统对象,并开流
 		FileSystem fs = FileSystem.get(context.getConfiguration());
 		FSDataInputStream fis = fs.open(path);
 
		//通过包装流转换为 reader,方便按行读取
 		BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));

		//逐行读取,按行处理
 		String line;
 		while (StringUtils.isNotEmpty(line = reader.readLine())) {
 			//切割一行 
			//01 小米
 			String[] split = line.split("\t");
 			pdMap.put(split[0], split[1]);
		}
 
		//关流
 		IOUtils.closeStream(reader);
	}
 	
	@Override
 	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
 		//读取大表数据 
		//1001 01 1
	 	String[] fields = value.toString().split("\t");
 
		//通过大表每行数据的 pid,去 pdMap 里面取出 pname
 		String pname = pdMap.get(fields[1]);
 
		//将大表每行数据的 pid 替换为 pname
		text.set(fields[0] + "\t" + pname + "\t" + fields[2]);
 
		//写出
 		context.write(text,NullWritable.get());
 	}
} 

数据清洗(ETL)

“ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL 一词较常用在数据仓库,但其对象并不限于数据仓库。

在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。

(1)需求:去除日志中字段个数小于等于 11 的日志。需要在 Map 阶段对输入的数据根据规则进行过滤清洗。
(2)实现代码
编写 WebLogMapper 类

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{
	@Override
	protected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {
		// 获取 1 行数据
		String line = value.toString();
		// 解析日志
		boolean result = parseLog(line,context);
		// 日志不合法退出
		if (!result) {
			return;
		}
		// 日志合法就直接写出
		context.write(value, NullWritable.get());
	}
	// 封装解析日志的方法
	private boolean parseLog(String line, Context context) {
	// 截取
	String[] fields = line.split(" ");
	// 日志长度大于 11 的为合法
		if (fields.length > 11) {
			return true;
		}else {
			return false;
		}
	}
}

(2)编写 WebLogDriver 类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
	public static void main(String[] args) throws Exception {
		// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
 		args = new String[] { "D:/input/inputlog", "D:/output1" };
		// 获取 job 信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);
		
		// 加载 jar 包
		job.setJarByClass(LogDriver.class);
		
		// 关联 map
		job.setMapperClass(WebLogMapper.class);
		
		// 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 设置 reducetask 个数为 0
		job.setNumReduceTasks(0);
		
		// 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		// 提交
 		boolean b = job.waitForCompletion(true);
 		System.exit(b ? 0 : 1);
	}
}

Hadoop 数据压缩

1. 概述

(1)压缩的好处和坏处

  • 压缩的优点:以减少磁盘 IO、减少磁盘存储空间。
  • 压缩的缺点:增加 CPU 开销。

(2)压缩原则

  • 运算密集型的 Job,少用压缩
  • IO 密集型的 Job,多用压缩

2. MR支持的压缩编码

(1)压缩算法对比

压缩格式是否Hadoop自带算法文件扩展名是否可切片转成压缩后,是否需要修改原始程序
DEFLATE是,可以直接使用DEFLATE.deflate和文本处理一样,不需要修改程序
Gzip是,可以直接使用DEFLATE.gz和文本处理一样,不需要修改程序
bzip2是,可以直接使用bzip2.bz2和文本处理一样,不需要修改程序
LZO否,需要安装LZO.lzo需要建索引,还需要指定输入格式
Snappy是,可以直接使用Snappy.snappy和文本处理一样,不需要修改程序

(2)压缩性能的比较

压缩算法原始文件大小压缩文件大小压缩速度解压速度
gzip8.3GB1.8GB17.5MB/s58MB/s
bzip28.3GB1.1GB2.4MB/s9.5MB/s
LZO8.3GB2.9GB49.3MB/s74.6MB/s

3. 压缩方式选择

压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。

压缩方式优点缺点
Gzip压缩压缩率比较高不支持 Split;压缩/解压速度一般
Bzip2压缩压缩率高;支持 Split压缩/解压速度慢
Lzo压缩压缩/解压速度比较快;支持 Split压缩率一般;想支持切片需要额外创建索引
Snappy压缩压缩和解压缩速度快不支持 Split;压缩率一般

压缩位置选择:压缩可以在 MapReduce 作用的任意阶段启用。
在这里插入图片描述

4. 压缩参数配置

(1)为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器

压缩格式对应的编码/解码器
DEFLATEorg.apache.hadoop.io.compress.DefaultCodec
gziporg.apache.hadoop.io.compress.GzipCodec
bzip2org.apache.hadoop.io.compress.BZip2Codec
LZOcom.hadoop.compression.lzo.LzopCodec
Snappyorg.apache.hadoop.io.compress.SnappyCodec

(2)要在 Hadoop 中启用压缩,可以配置如下参数

配置文件参数默认值压缩阶段建议
core-site.xmlio.compression.codecs无,需要使用命令 hadoop checknative查看支持的本地库压缩方式输入阶段Hadoop使用文件扩展名判断是否支110持某种编码/解码器
mapred-site.xmlmapreduce.map.output.compressfalsemapper输出这个参数设置为true启动压缩
mapred-site.xmlmapreduce.map.output.compress.codecorg.apache.hadoop.io.compress.DefaultCodecmapper输出企业中多使用 LZO 或者 Snappy 编码/解码器在此阶段压缩数据
mapred-site.xmlmapreduce.output.fileoutputformat.compressfalsereducer输出这个参数设置为true启用压缩
mapred-site.xmlmapreduce.output.fileoutputformat.compress.codecorg.apache.hadoop.io.compress.DefaultCodecreducer输出使用标准工具或者编码/解码器,例如gzip/biz2
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值